【题目】如图,AB是⊙O的直径,且AB =6,C是⊙O上一点,D是的中点,过点D作⊙O的切线,与AB、AC的延长线分别交于点E、F,连接AD.
(l)求证:AF⊥EF;
(2)填空:
①当BE= 时,点C是AF的中点;
②当BE= 时,四边形OBDC是菱形,
【答案】(1)证明见解析;(2)①6,②3
【解析】试题分析:(1)连结OD,由直线EF与 O相切于点D,得到OD⊥EF,由同圆的半径相等推出∠1=∠3,由点D为的中点,得到∠1=∠2,证得∠2=∠3,得到OD∥AF,得出结论AF⊥EF;(2)①根据平行线分线段成比例定理,当B为的AE中点时,点C是AF的中点;②由切线的性质可证得OD⊥EF,根据直角三角形斜边上的中线的性质得到BD=OB=BE,
由D是的中点,得到CD=BD, 由此CD=BD=BO=OD,
试题解析:
(1)证明:连结OD,
∵直线EF与O相切于点D,
∴OD⊥EF,
∵OA=OD,
∴∠1=∠3,
∵点D为BC的中点,
∴∠1=∠2,
∴∠2=∠3,
∴OD∥AF,
∴AF⊥EF;
(2) ①当BE=6时,
由(1)知,BC∥EF,当AB=BE ,AC=CF,
∴BE=6时,点C是AF的中点,
故答案为:6;
②当BE=3时,
∵AB是⊙O的直径,AB=6,
∴OB=OD=OC=BE=3,
∵ED是⊙O的切线,
∴OD⊥EF,
∴BD=OB=BE,
D是的中点,
∴CD=BD,
∴CD=BD=BO=OD,
四边形OBDC是菱形.
故答案为:3.
科目:初中数学 来源: 题型:
【题目】一个正整数若能表示为两个正整数的平方差,则称这个正整数为“创新数”,比如41=212-202,故41是一个“创新数”.下列各数中,不是“创新数”的是( )
A. 16B. 19C. 27D. 30
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0)。
(1)求此抛物线的解析式;
(2)写出顶点坐标及对称轴;
(3)若抛物线上有一点B,且,求点B的坐标。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个样本的50个数据分别落在5个组内,第1,2,3,4组数据的个数分别是2,8,15,5,则第5组数据的频数为_________,频率为_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,位似比为2:1将△EFO缩小,则点E的对应点E′的坐标是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB,BC,CD分别与⊙O相切于E,F,G.且AB∥CD.BO=6cm,CO=8cm.
(1)求证:BO⊥CO;
(2)求BE和CG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC 中,∠C=90°,AB=15,BC=9,点P,Q分别在BC,AC上,CP=3x,CQ=4x(0<x<3).把△PCQ绕点P旋转,得到△PDE,点D落在线段PQ上.
(1)求证:PQ∥AB;
(2)若点D在BAC的平分线上,求CP的长;
(3)若△PDE与△ABC重叠部分图形的周长为T,且12≤T≤16,求x的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com