精英家教网 > 初中数学 > 题目详情
8.如图,在△ABC中,∠ABC=45°,AD⊥BC于点D,点E在AD上,且DE=DC.
(1)求证:△BDE≌△ADC;
(2)若BC=8.4,tanC=$\frac{5}{2}$,求DE的长.

分析 (1)由AD⊥BC可得∠ADB=∠ADC=90°,又∠ABC=45°易得∠ABC=∠BAD,可得AD=BD,由SAS定理可得△BDE≌△ADC;
(2)设DE=x,因为tanC=$\frac{5}{2}$可得AD=2.5x,可得BC=3.5x,由BC=8.4,可解得x,可得DE.

解答 (1)证明:∵AD⊥BC,
∴∠ADB=∠ADC=90°,
∵∠ABC=45°,
∴∠BAD=45°,
∴∠ABC=∠BAD,
∴AD=BD,
在△BDE和△ADC中,
$\left\{\begin{array}{l}{BD=AD}\\{∠EDB=∠ADC}\\{DE=DC}\end{array}\right.$,
∴△BDE≌△ADC(SAS);

(2)解:设DE=x,
∵DE=DC,
∴DC=x,
∵tanC=$\frac{5}{2}$,
∴AD=2.5x,
∵AD=BD,
∴BD=2.5x,
∴BC=BD+CD=3.5x,
∵BC=8.4,
∴x=2.4,
DE=2.4.

点评 本题主要考查了全等三角形的性质和判定,利用方程思想是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.如图所示,将矩形OABC置于平面直角坐标系中,点A,C分别在x,y轴的正半轴上,已知点B(4,2),将矩形OABC翻折,使得点C的对应点P恰好落在线段OA(包括端点O,A)上,折痕所在直线分别交BC、OA于点D、E;若点P在线段OA上运动时,过点P作OA的垂线交折痕所在直线于点Q.
(1)求证:CQ=QP
(2)设点Q的坐标为(x,y),求y关于x的函数关系式及自变量x的取值范围;
(3)如图2,连结OQ,OB,当点P在线段OA上运动时,设三角形OBQ的面积为S,当x取何值时,S取得最小值,并求出最小值;

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.下列计算正确的是(  )
A.2a2•a=3a3B.(2a)2÷a=4aC.(-3a)2=3a2D.(a-b)2=a2-b2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.在矩形ABCD中,点E为AD的中点,连接BE、AC,AC⊥BE于点F,连接DF,则下列结论正确的有②③④.
①CF=3AF ②△AEF与△CAB相似 ③DF=DC ④tan∠CAD=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.计算$\frac{1}{2}$-$\frac{1}{2}$×3的结果是(  )
A.0B.1C.-2D.-1

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.已知平面直角坐标系中,⊙M在第一象限内,点M的坐标为(a+1,a)(其中a>1),⊙M的半径为1,动点P在坐标轴上,过点P作⊙M的切线,则最短的切线长为(  )
A.a-1B.aC.$\sqrt{{a}^{2}-1}$D.$\sqrt{{a}^{2}+2a}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.用一段长为32m的篱芭绕过障碍物围成一个菜园,菜园一边靠墙.如图,已知CD=2m,DE=4m,设AB=x(m)(2<x<14),菜园面积为y(m2),请回答下列问题:
(1)求y与x之间的函数关系式.
(2)当x取何值时,菜园面积最大,最大面积是多少.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.正方形ABCD内接于⊙O,如图所示,在劣弧上取一点E,连接DE、BE,过点D作DF∥BE交⊙O于点F,连接BF、AF,且AF与DE相交于点G.
(1)求证:四边形EBFD是矩形;
(2)求证:DG=BE;
(3)若点E是劣弧AB的中点,求tan∠ABE的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,已知抛物线y=-$\frac{1}{4}{x^2}$+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A(-2,0).
(1)求抛物线的解析式及它的对称轴方程;
(2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式;
(3)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案