精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,∠1=2.求证:∠3 +4=180°

证明:∵∠1=2(已知)

ab    

∴∠3 +5=180° (两直线平行,同旁内角互补)

∵∠4=5    

∴∠3 +4=180° (等量代换)

【答案】同位角相等,两直线平行;两直线平行,同旁内角互补;对顶角相等.

【解析】

先判定ab,即可得出∠3+5=180°,再根据对顶角相等,即可得到∠4=5,进而得出∠3+4 =180°.

证明:∵∠1=2,

ab (同位角相等,两直线平行),

∴∠3+5=180° (两直线平行,同旁内角互补),

又∵∠4=5(对顶角相等),

∴∠3+4=180°.

故答案为:同位角相等,两直线平行;两直线平行,同旁内角互补;对顶角相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知RtABC中,∠B=90°,A=60°,AC=2+4,点M、N分别在线段AC、AB上,将ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当DCM为直角三角形时,折痕MN的长为__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有四张相同的卡片,分别写有数字2,0,1,5,将它们背面朝上(背面无差别)洗匀后放在桌上.

(1)从中任意抽出一张,抽到卡片上的数字为负数的概率;

(2)从中任意抽出两张,用树状图或表格列出所有可能的结果,并求抽出卡片上的数字积为正数的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在等腰ABCADE中,AB=AC,AD=AE,且∠BAC=DAE=120°.

(1)求证:ABD≌△ACE;

(2)把ADE绕点A逆时针方向旋转到图②的位置,连接CD,点M、P、N分别为DE、DC、BC的中点,连接MN、PN、PM,判断PMN的形状,并说明理由;

(3)在(2)中,把ADE绕点A在平面内自由旋转,若AD=4,AB=6,请分别求出PMN周长的最小值与最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,已知AB=3,点E,F分别在BC、CD上,且∠BAE=30°,∠DAF=15°,则AEF的面积为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(m,3)、B(﹣6,n),与x轴交于点C.

(1)求一次函数y=kx+b的关系式;

(2)结合图象,直接写出满足kx+b>的x的取值范围;

(3)若点P在x轴上,且SACP=SBOC,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在每个小正方形的边长为1的网格中,点A、B、C均在格点上,在△ABC的内部有一点P,满足SPAB:SPBC:SPCA=1:2:3,请在如图所示的网格中,用无刻度直尺画出点P(保留画图痕迹)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,ABx轴,∠ABC=135°,且AB=4.

(1)填空:抛物线的顶点坐标为 (用含m的代数式表示);

(2)求ABC的面积(用含a的代数式表示);

(3)若ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.

查看答案和解析>>

同步练习册答案