精英家教网 > 初中数学 > 题目详情
(2012•朝阳)如图,AB为⊙O的直径,CD为⊙O的一条弦,CD⊥AB,垂足为E,已知CD=6,AE=1,则⊙0的半径为
5
5
分析:连接OD,由垂径定理得求出DE,设⊙O的半径是R,由勾股定理得出R2=(R-1)2+32,求出R即可.
解答:解:
连接OD,
∵AB⊥CD,AB是直径,
∴由垂径定理得:DE=CE=3,
设⊙O的半径是R,
在Rt△ODE中,由勾股定理得:OD2=OE2+DE2,即R2=(R-1)2+32
解得:R=5,
故答案为:5.
点评:本题考查了垂径定理和勾股定理的应用,用了方程思想,题目比较好,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•朝阳)如图所示中的折线ABC为甲地向乙地打长途电话需付的电话费y(元)与通话时间t(分钟)之间的函数关系,则通话8分钟应付电话费
7.4
7.4
元.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•朝阳)如图已知P为⊙O外一点,PA为⊙O的切线,B为⊙O上一点,且PA=PB,C为优弧
AB
上任意一点(不与A、B重合),连接OP、AB,AB与OP相交于点D,连接AC、BC.
(1)求证:PB为⊙O的切线;
(2)若tan∠BCA=
2
3
,⊙O的半径为
13
,求弦AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•朝阳)如图,△ABC三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC绕点C顺时针旋转到△A′B′C的位置,且A′、B′仍落在格点上,则线段AC扫过的扇形所围成的圆锥体的底面半径是
13
4
13
4
单位长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•朝阳)如图,在正方形ABCD内有一折线段,其中AE⊥EF,EF⊥FC,并且AE=4,EF=8,FC=12,则正方形与其外接圆形成的阴影部分的面积为
80π-160
80π-160

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•朝阳)如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于F点,AB=BF,请你添加一个条件(不需再添加任何线段或字母),使之能推出四边形ABCD为平行四边形,请证明.你添加的条件是
∠F=∠CDE
∠F=∠CDE

查看答案和解析>>

同步练习册答案