精英家教网 > 初中数学 > 题目详情
已知菱形纸片ABCD的边长为8,∠A=60°,E为AB边上的点,过点E作EF∥BD交AD于点F.将菱形先沿EF按图1所示方式折叠,点A落在点A'处,过点A'作GH∥BD分别交线段BC、DC于点G、H,再将菱形沿GH按图1所示方式折叠,点C落在点C'处,C'G与C'H分别交A'E与A'F于点M、N.若点C'在△A'EF的内部或边上,此时我们称四边形A'MC'N(即图中阴影部分)为“重叠四边形”.

(1)若把菱形纸片ABCD放在菱形网格中(图中每个小三角形都是边长为1的等边三角形),点A、B、C、D、E恰好落在网格图中的格点上.如图2所示,请直接写出此时重叠四边形A'MC'N的面积;
(2)实验探究:设AE的长为m,若重叠四边形A'MC'N存在.试用含m的代数式表示重叠四边形A'MC'N的面积,并写出m的取值范围(直接写出结果,备用图供实验,探究使用).
解:(1)重叠四边形A'MC'N的面积为______
【答案】分析:(1)由折叠的性质,即可证得四边形A′MC′N是菱形,然后由A′M=2,∠A′=60°,即可求得MN=2,A′C′=2,根据菱形的面积等于对角线积的一半,即可求得重叠四边形A′MC′N的面积;
(2)首先由折叠的性质,证得A′M=GM=BE,然后由AE=m,则A′M=8-m,根据(1)的方法,即可求得用含m的代数式表示重叠四边形A′MC′N的面积.
解答:解:(1)根据题意得:∠A′=∠C′=60°,∠C′MA′=∠C′NA′=120°,
∴四边形A′MC′N是平行四边形,
∵A′M=C′M,
∴四边形A′MC′N是菱形,
∵A′M=2,∠A′=60°,
∴MN=2,A′C′=2
∴重叠四边形A′MC′N的面积为:MN•A′C′=×2×2=;(2分)

(2)根据题意得:BE∥GM,BC∥A′E,
∴四边形BEMG是平行四边形,
∴GM=BE,
∵∠MGA′=∠A′MG=60°,
∴△A′GM是等边三角形,
∴A′M=GM=BE,
∵AE=m,则A′M=8-m,
由(1)得:MN=8-m,A′C′=(8-m),
∴用含m的代数式表示重叠四边形A′MC′N的面积为;(4分)
∴m的取值范围为≤m<8.(5分)
点评:此题考查了折叠的性质,平行四边形的判定与性质,以及菱形的性质等知识.此题图形较复杂,难度适中,解此题的关键是注意数形结合思想与方程思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知菱形纸片ABCD的边长为8,∠A=60°,E为AB边上的点,过点E作EF∥BD交AD于点F.将菱形先沿EF按图1所示方式折叠,点A落在点A'处,过点A'作GH∥BD分别交线段BC、DC于点G、H,再将菱形沿GH按图1所示方式折叠,点C落在点C'处,C'G与C'H分别交A'E与A'F于点M、N.若点C'在△A'EF的内部或边上,此时我们称四边形A'MC'N(即图中阴影部分)为“重叠四边形”.
精英家教网
(1)若把菱形纸片ABCD放在菱形网格中(图中每个小三角形都是边长为1的等边三角形),点A、B、C、D、E恰好落在网格图中的格点上.如图2所示,请直接写出此时重叠四边形A'MC'N的面积;
(2)实验探究:设AE的长为m,若重叠四边形A'MC'N存在.试用含m的代数式表示重叠四边形A'MC'N的面积,并写出m的取值范围(直接写出结果,备用图供实验,探究使用).
解:(1)重叠四边形A'MC'N的面积为
 

(2)用含m的代数式表示重叠四边形A'MC'N的面积为
 
;m的取值范围为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知菱形纸片ABCD的边长为,∠A=60°,E为边上的点,过点E作EF∥BD交AD于点F.将菱形先沿EF按图1所示方式折叠,点A落在点处,过点作GH∥BD分别交线段BC、DC于点G、H,再将菱形沿GH按图1所示方式折叠,点C落在点处,H分别交于点M、N.若点在△EF的内部或边上,此时我们称四边形(即图中阴影部分)为“重叠四边形”.

 

1.若把菱形纸片ABCD放在菱形网格中(图中每个小三角形都是边长为1的等边三角形),点A、B、C、D、E恰好落在网格图中的格点上.如图2所示,请直接写出此时重叠四边形的面积;

2.实验探究:设AE的长为,若重叠四边形存在.试用含的代数式表示重叠四边形的面积,并写出的取值范围(直接写出结果,备用图供实验,探究使用).

 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知菱形纸片ABCD的边长为,∠A=60°,E为边上的点,过点E作EF∥BD交AD于点F.将菱形先沿EF按图1所示方式折叠,点A落在点处,过点作GH∥BD分别交线段BC、DC于点G、H,再将菱形沿GH按图1所示方式折叠,点C落在点处,H分别交于点M、N.若点在△EF的内部或边上,此时我们称四边形(即图中阴影部分)为“重叠四边形”.

 

1.若把菱形纸片ABCD放在菱形网格中(图中每个小三角形都是边长为1的等边三角形),点A、B、C、D、E恰好落在网格图中的格点上.如图2所示,请直接写出此时重叠四边形的面积;

2.实验探究:设AE的长为,若重叠四边形存在.试用含的代数式表示重叠四边形的面积,并写出的取值范围(直接写出结果,备用图供实验,探究使用).

 

查看答案和解析>>

科目:初中数学 来源: 题型:

(本小题满分5分)已知菱形纸片ABCD的边长为,∠A=60°,E为边上的点,过点E作EF∥BD交AD于点F.将菱形先沿EF按图1所示方式折叠,点A落在点处,过点作GH∥BD分别交线段BC、DC于点G、H,再将菱形沿GH按图1所示方式折叠,点C落在点处,H分别交于点M、N.若点在△EF的内部或边上,此时我们称四边形(即图中阴影部分)为“重叠四边形”.



 
图1                      图2                     备用图
(1)若把菱形纸片ABCD放在菱形网格中(图中每个小三角形都是边长为1的等边三角形),点A、B、C、D、E恰好落在网格图中的格点上.如图2所示,请直接写出此时重叠四边形的面积;
(2)实验探究:设AE的长为,若重叠四边形存在.试用含的代数式表示重叠四边形的面积,并写出的取值范围(直接写出结果,备用图供实验,探究使用).

查看答案和解析>>

科目:初中数学 来源:2011年北京房山区九年级学题统一练习(二) 题型:解答题

已知菱形纸片ABCD的边长为,∠A=60°,E为边上的点,过点E作EF∥BD交AD于点F.将菱形先沿EF按图1所示方式折叠,点A落在点处,过点作GH∥BD分别交线段BC、DC于点G、H,再将菱形沿GH按图1所示方式折叠,点C落在点处, H分别交于点M、N.若点在△EF的内部或边上,此时我们称四边形(即图中阴影部分)为“重叠四边形”.

 

1.若把菱形纸片ABCD放在菱形网格中(图中每个小三角形都是边长为1的等边三角形),点A、B、C、D、E恰好落在网格图中的格点上.如图2所示,请直接写出此时重叠四边形的面积;

2.实验探究:设AE的长为,若重叠四边形存在.试用含的代数式表示重叠四边形的面积,并写出的取值范围(直接写出结果,备用图供实验,探究使用).

 

查看答案和解析>>

同步练习册答案