【题目】如图,在△ABO中,∠B=90 ,OB=3,OA=5,以AO上一点P为圆心,PO长为半径的圆恰好与AB相切于点C,则下列结论正确的是( ).
A.⊙P 的半径为
B.经过A,O,B三点的抛物线的函数表达式是
C.点(3,2)在经过A,O,B三点的抛物线上
D.经过A,O,C三点的抛物线的函数表达式是
【答案】D
【解析】
A、连接PC,根据已知条件可知△ACP∽△ABO,再由OP=PC,可列出相似比得出;
B、由射影定理及勾股定理可得点B坐标,由A、B、O三点坐标,可求出抛物线的函数表达式;
C、由射影定理及勾股定理可计算出点C坐标,将点C代入抛物线表达式即可判断;
D、由A,O,C三点坐标可求得经过A,O,C三点的抛物线的函数表达式.
解:如图所示,连接PC,
∵圆P与AB相切于点C,所以PC⊥AB,
又∵∠B=90,
所以△ACP∽△ABO,
设OP=x,则OP=PC=x,
又∵OB=3,OA=5,
∴AP=5-x,
∴,解得,
∴半径为,故A选项错误;
过B作BD⊥OA交OA于点D,
∵∠B=90,BD⊥OA,
由勾股定理可得:,
由面积相等可得:
∴,
∴由射影定理可得,
∴
∴,
设经过A,O,B三点的抛物线的函数表达式为;
将A(5,0),O(0,0),代入上式可得:
解得 ,,c=0,
经过A,O,B三点的抛物线的函数表达式为,
故B选项错误;
过点C作CE⊥OA交OA于点E,
∵,
∴由射影定理可知,
∴,所以,
由勾股定理得,
∴点C坐标为,
故选项C错误;
设经过A,O,C三点的抛物线的函数表达式是,
将A(5,0),O(0,0),代入得,
解得:,
∴经过A,O,C三点的抛物线的函数表达式是,
故选项D正确.
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数的图像与轴交于点,与轴的交点在和之间(不包括这两点),对称轴为直线.下列结论:
①;②;③;④;⑤.
其中正确结论有 __________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,点E在边CD上(不与点C,D重合),连接AE,BD交于点F.
(1)若点E为CD中点,AB=2,求AF的长.
(2)若∠AFB=2,求的值.
(3)若点G在线段BF上,且GF=2BG,连接AG,CG,设=x,四边形AGCE的面积为,ABG的面积为,求的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AC=BC=5,AB=8,点P在AB上,点Q在AC或AC的延长线上,AQ=AP,以AP、AQ为邻边作菱形APRQ,设AP的长为x,菱形APRQ与△ABC重影部分图形的面积为y(平方单位),
(1)求sinA的值.
(2)当x为何值时,点R落在BC上.
(3)当菱形APRQ与△ABC重叠部分的图形为四边形时,求y与x的函数关系式.
(4)直接写出当x为何值时,经过三角形顶点的直线同时将菱形、三角形的面积二等分.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x的函数关系图象.
(1)求y与x的函数解析式;
(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.如图1,把一张顶角为36的等腰三角形纸片剪两刀,分成3张小纸片,使每张小纸片都是等腰三角形,我们把这两条线段叫做等腰三角形的三分线.
(1)如图2,请用两种不同的方法画出顶角为45的等腰三角形的三分线,并标注每个等腰三角形顶角的度数:(若两种方法分得的三角形成3对全等三角形,则视为同一种) .
(2)如图3,△ABC 中,AC=2,BC=3,∠C=2∠B,请画出△ABC 的三分线,并求出三分线的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).
(1)求这个二次函数的表达式;
(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.
①求线段PM的最大值;
②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,3),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为( )
A. (,)B. (2,)C. (,)D. (,3﹣)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com