解:

(1)S
△BDF=S
△ABD-S
△ABF,
∵小正方形的边长为a,
∴AF=

a,
∴S
△BDF=S
△ABD-S
△ABF,
=4×4×

-

×4×

a=8-2

a.
(2)如图1,S
△BDF=S
△ABD+S
梯形AGFD-S
△BGF=

×4×4+

×a(4+a)-

×a(4+a)=8.
(3)如图2,作FH⊥BD于H点,连接AF.则S
△BDF=

×BD×FH,
因为小正方形AEFG绕A点旋转任意角度,所以点F离线段BD的距离是变化的,即FH的长度是变化的.
由于BD得长度是定值,所以当FH取得最大值时S
△BDF最大,当FH取得最小值时S
△BDF最小.
所以当点F离BD最远时,FH取得最大值,此时点F、A、H在同一条直线上(如图3所示);
当点F离BD最近时,FH取得最小值,此时点F、A、H也在同一条直线上(如图4所示).
在图3中,S
△BDF=

BD×FH=

×4

(2

+

a)=8+4a,
在图4中,S
△BDF=

BD×FH=

×4

(2

-

a)=8-4a,
∴S
△BDF的取值范围是:8-4a≤S
△BDF≤8+4a.

分析:(1)观察图形,△BDF的面积可由△ABD、ABF的面积差得到,可分别求出△ABD、△ABF的面积,然后作差即可.
(2)思路同(1),△BDF的面积,可由△ABD、梯形AGFD的面积和减去△ABF的面积求得,即可得解.
(3)过F作BD的垂线,设垂足为H,由于BD是定值,△BDF的面积最大,则FH最大,△BDF的面积最小,则FH最小;可据此画出图形,求出两种情况下△FDH的面积,从而得到其取值范围.
点评:此题主要考查了正方形的性质、图形面积的求法以及图形的旋转变换,(3)题中,正确地作出辅助线,并判断出△BDF的面积与FH的关系,是解决问题的关键.