精英家教网 > 初中数学 > 题目详情

试判断以如下的a、b、c为三边长的三角形是不是直角三角形.如果是,那么哪一条边所对的角是直角?

(1)a=25,b=20,c=15;
(2)a=1,b=2,
(3)a=40,b=9,c=40;
(4)a:b:c=5:12:13.
答案:略
解析:

(1)是.a所对的角是直角. (2)是.b所对的角是直角. (3)不是. 

(4)是.c所对的角是直角.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.
(1)请完成如下操作:①以点O为原点、竖直和水平方向为轴、网格边长为单位长,建立平面直角坐标系;
②根据图形提供的信息,标出该圆弧所在圆的圆心D,并连接AD、CD.
(2)请在(1)的基础上,完成下列填空:
①写出点的坐标:C
 
;D(
 
);
②⊙D的半径=
 
(结果保留根号);
③若扇形ADC是一个圆锥的侧面展开图,则该圆锥的底面的面积为
 
;(结果保留π)
④若E(7,0),试判断直线EC与⊙D的位置关系,并说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•峨边县模拟)如图在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.
(1)请完成如下操作:
①以点O为坐标原点、竖直和水平方向为轴、网格边长为单位长,建立平面直角坐标系; ②根据图形提供的信息,标出该圆弧所在圆的圆心D,并连接AD、CD.
(2)请在(1)的基础上,完成下列填空:
①写出点的坐标:C
(6,2)
(6,2)
、D
(2,0)
(2,0)

②⊙D的半径=
2
5
2
5
(结果保留根号);
③若E(7,0),试判断直线EC与⊙D的位置关系,并说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•江西)某学校活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:
●操作发现:
在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,则下列结论正确的是
①②③④
①②③④
(填序号即可)
①AF=AG=
12
AB;②MD=ME;③整个图形是轴对称图形;④∠DAB=∠DMB.
●数学思考:
在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图2所示,M是BC的中点,连接MD和ME,则MD与ME具有怎样的数量和位置关系?请给出证明过程;
●类比探究:
在任意△ABC中,仍分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连接MD和ME,试判断△MED的形状.答:
等腰直角三角形
等腰直角三角形

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南昌)某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:
(1)操作发现:在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,则下列结论正确的是
①②③④
①②③④
(填序号即可)
①AF=AG=
12
AB;②MD=ME;③整个图形是轴对称图形;④MD⊥ME.
(2)数学思考:在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图2所示,M是BC的中点,连接MD和ME,则MD和ME具有怎样的数量关系?请给出证明过程;
(3)类比探究:
(i)在任意△ABC中,仍分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连接MD和ME,试判断△MED的形状.答:
等腰直角三角形
等腰直角三角形

(ii)在三边互不相等的△ABC中(见备用图),仍分别以AB和AC为斜边,向△ABC的内侧作(非等腰)直角三角形ABD和(非等腰)直角三角形ACE,M是BC的中点,连接MD和ME,要使(2)中的结论此时仍然成立,你认为需增加一个什么样的条件?(限用题中字母表示)并说明理由.

查看答案和解析>>

同步练习册答案