精英家教网 > 初中数学 > 题目详情
如图,四边形ABCD是矩形,点P是直线AD与BC外的任意一点,连接PA、PB、PC、PD.请解答下列问题:

(1)如图1,当点P在线段BC的垂直平分线MN上(对角线AC与BD的交点Q除外)时,证明△PAC≌△PDB;
(2)如图2,当点P在矩形ABCD内部时,求证:PA2+PC2=PB2+PD2
(3)若矩形ABCD在平面直角坐标系xOy中,点B的坐标为(1,1),点D的坐标为(5,3),如图3所示,设△PBC的面积为y,△PAD的面积为x,求y与x之间的函数关系式.
【答案】分析:(1)利用三角形三边关系对应相等得出△PAC≌△PDB即可;
(2)利用已知可证得四边形ADGK是矩形,进而得出AK2=DG2,CG2=BK2,即可得出答案;
(3)结合图形得出当点P在直线AD与BC之间时,以及当点P在直线AD上方时和当点P在直线BC下方时,分别求出即可.
解答:解:(1)作BC的中垂线MN,在MN上取点P,连接PA、PB、PC、PD,
如图(1)所示,∵MN是BC的中垂线,
∴PA=PD,PC=PB,
又∵四边形ABCD是矩形,
∴AC=DB,

∴△PAC≌△PDB(SSS),

(2)证明:过点P作KG∥BC,如图(2)
∵四边形ABCD是矩形,
∴AB⊥BC,DC⊥BC
∴AB⊥KG,DC⊥KG,
∴在Rt△PAK中,PA2=AK2+PK2
同理,PC2=CG2+PG2;PB2=BK2+PK2,PD2=+DG2+PG2
PA2+PC2=AK2+PK2+CG2+PG2,PB2+PD2=BK2+PK2+DG2+PG2
AB⊥KG,DC⊥KG,AD⊥AB,可证得四边形ADGK是矩形,
∴AK=DG,同理CG=BK,
∴AK2=DG2,CG2=BK2
∴PA2+PC2=PB2+PD2

(3)∵点B的坐标为(1,1),点D的坐标为(5,3)
∴BC=4,AB=2,
∴S矩形ABCD=4×2=8,
直线HI垂直BC于点I,交AD于点H,
当点P在直线AD与BC之间时,
S△PAD+S△PBC=BC•HI=4,
即x+y=4,因而y与x的函数关系式为y=4-x,
当点P在直线AD上方时,S△PBC-S△PAD=BC•HI=4,
而y与x的函数关系式为y=4+x,
当点P在直线BC下方时,S△PAD-S△PBC=BC•HI=4,
y与x的函数关系式为y=x-4.
点评:此题主要考查了矩形的判定与全等三角形的判定以及分类讨论思想应用,根据已知得出P点不同位置得出y与x之间的关系是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案