精英家教网 > 初中数学 > 题目详情
18.如图,已知抛物线y=-x2+2x+3与坐标轴交于A,B,C三点,抛物线上的点D与点C关于它的对称轴对称.
(1)直接写出点D的坐标和直线AD的解析式;
(2)点E是抛物线上位于直线AD上方的动点,过点E分别作EF∥x轴,EG∥y轴并交直线AD于点F、G,求△EFG周长的最大值;
(3)若点P为y轴上的动点,则在抛物线上是否存在点Q,使得以A,D,P,Q为顶点的四边形是平行四边形?若存在,请求出点Q的坐标,若不存在,请说明理由.

分析 (1)先求得点C的坐标,然后再求得抛物线的对称轴,由点C与点D关于x=1对称可求得点D的坐标,把y=0代入抛物线的解析式可求得对应的x的值,从而可得到点A的坐标,然后利用待定系数法求得直线AD的解析式即可;
(2)首先证明△EFG为等腰直角三角形,则△EFG的周长=(2+$\sqrt{2}$)EG,设E(t,-t2+2t+3),则G(t,t+1),然后得到EG与t的函数关系式,利用配方法可求得EG的最大值,最后依据△EFG的周长=(2+$\sqrt{2}$)EG求解即可;
(3)分为AD为平行四边形的边和AD为平行四边形的对角线时,两种情况,可先利用平行四边形的性质求得点Q的横坐标,然后将点Q的横坐标代入抛物线的解析式可求得点Q的纵坐标.

解答 解:(1)将x=0代入得y=3,
∴C(0,3).
∵抛物线的对称轴为x=-$\frac{b}{2a}$=1,C(0,3),
∴D(2,3).
把y=0代入抛物线的解析式得:0=-x2+2x+3,解得x=3或x=-1,
∴A(-1,0).
设直线AD的解析式为y=kx+b,将点A和点D的坐标代入得:$\left\{\begin{array}{l}{-k+b=0}\\{2k+b=3}\end{array}\right.$,解得:k=1,b=1,
∴直线AD的解析式为y=x+1.

(2)如图1所示:

∵直线AD的解析式为y=x+1,
∴∠DAB=45°.
∵EF∥x轴,EG∥y轴,
∴∠GEF=90°,∠GFE=∠DAB=45°
∴△EFG是等腰直角三角形.
∴△EFG的周长=EF+FG+EG=(2+$\sqrt{2}$)EG.
依题意,设E(t,-t2+2t+3),则G(t,t+1).
∴EG=-t2+2t+3-(t+1)=-(t-$\frac{1}{2}$)2+$\frac{9}{4}$.
∴EG的最大值为$\frac{9}{4}$.
∴△EFG的周长的最大值为$\frac{9}{2}$+$\frac{9\sqrt{2}}{4}$.

(3)存在.
①以AD为平行四边形的边时,PQ∥AD,PQ=AD.
∵A,D两点间的水平距离为3,
∴P,Q两点间的水平距离也为3.
∴点Q的横坐标为3或-3.
将x=3和x=-3分别代入y=-x2+2x+3得y=0或y=-12.
∴Q(3,0)或(-3,-12).
②当AD为平行四边形的对角线时,设AD的中点为M,
∵A(-1,0),D(2,3),M为AD的中点,
∴M($\frac{1}{2}$,$\frac{3}{2}$).
设点Q的横坐标为x,则$\frac{x+0}{2}$=$\frac{1}{2}$,解得x=1,
∴点Q的横坐标为1.
将x=1代入y=-x2+2x+3得y=4.
∴这时点Q的坐标为(1,4).
综上所述,当点Q的坐标为Q(3,0)或(-3,-12)或(1,4)时,以A,D,P,Q为顶点的四边形是平行四边形.

点评 本题主要考查的是二次函数的综合应用,解答本题主要应用了二次函数的性质、待定系数法求一次函数的解析式、平行四边形的性质,列出EG的长与t的函数关系式是解答问题(2)的关键,利用平行四边形的性质求得点Q的横坐标是解答问题(3)的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.如图,AB是⊙O的直径,点C在圆上,D,E是AC的延长线上的点,连接BD交⊙O于点F,且∠BAD=2∠DBE,AB=AD.
(1)求证:BE是⊙O的切线;
(2)若AC=4,DE=1,求线段BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图1,放置的一副三角尺,将含45°角的三角尺斜边中点O为旋转中心,逆时针旋转30°得到如图2,连接OB、OD、AD.
(1)求证:△AOB≌△AOD;
(2)试判定四边形ABOD是什么四边形,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,二次函数y=x2+bx+c的图象经过A(-1,0)和B(3,0)两点,且交y轴于点C,M为抛物线的顶点.
(1)求这个二次函数的表达式;
(2)若将该二次函数图象向上平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△BOC的内部(不包含边界),求m的取值范围;
(3)点P是抛物线上一动点,PQ∥BC交x轴于点Q,当以点B,C,P,Q为顶点的四边形是平行四边形时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,点N是反比例函数y=$\frac{6}{x}$(x>0)图象上的一个动点,过点N作MN∥x轴,交直线y=-2x+4于点M,则△OMN面积的最小值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.已知关于x的一元二次方程ax2+bx+c=5的一个根是2,且二次函数y=ax2+bx+c的对称轴是直线x=2,则抛物线y=ax2+bx+c的顶点坐标为(2,5).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.(1)计算:-12×$\sqrt{27}$-($\frac{1}{2}$)-1+6sin60°
(2)化简:$\frac{3x-3}{{x}^{2}-1}$÷$\frac{3x}{x+1}$-$\frac{1}{x-1}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图是某货站传送货物的平面示意图,为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4m.
(1)求新传送带AC的长度;
(2)如果需要在货物着地点C的左侧留出2m的通道,试判断距离B点4m的货物MNQP是否需要挪走,并说明理由.(结果精确到0.01m,已知$\sqrt{2}$≈1.41,$\sqrt{3}$≈1.73,$\sqrt{6}$≈2.45)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.计算:$\frac{3}{2}$$\sqrt{2}$+$\frac{1}{4}$$\sqrt{2}$-3$\sqrt{2}$.

查看答案和解析>>

同步练习册答案