精英家教网 > 初中数学 > 题目详情
已知:如图,△ABC是等边三角形,D、E分别是BA、CA的延长线上的点,且AD=AE,连接ED并延长到F,使得EF=EC,连接AF、CF、BE.

(1)求证:四边形BCFD是平行四边形;
(2)试指出图中与AF相等的线段,并说明理由。
通过三角形全等吧求证

试题分析:(1)根据定义两组对边分别平行的四边形是平行四边形,在本题中,因为△ABC为等边三角形,AD、AE分别为CA、BA的延长线且AE=AD,所以△ADE也为等边三角形,可知EF和BC平行,又因为EC=EF,所以△ECF也为等边三角形,即CF和BD平行,来证明两组对边分别平行;
(2)从图象观察,AF在三角形ADF中,而和ADF形状相同的是三角形ABE,所以,可试着证明两三角形全等.
证明:(1)∵△ABC为等边三角形,且AE=AD,
∴由题可知∠AED=∠ADE=∠EAD=60°
∴EF∥BC,
又∵EC=EF,
∴△ECF为等边三角形,即∠EFC=∠EDB=60°,
∴CF∥BD
∴四边形BCFD为平行四边形.
(2)AF=EB.
在△AED中,∵AE=AD,∠EAD=60°,
∴∠BAE=120°,∠EDA=60°,
∴∠ADF=120°.
即∠EAB=∠ADF,
又由(1)知DF=BC=BA,
∴△ADF≌△EAB.
∴AF=EB.
点评:本题考查了平行四边形的判定,解题的关键是找准题目中的已知条件,利用平行四边形的定义进行解题.另外此题还考查了全等的应用
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

点P是矩形ABCD的边AD上的一个动点,矩形的两条边AB、AC的
长分别为3和4,那么点P到矩形的两条对角线AC和BD的距离之和是
A.     B.    C.        D.不确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为(   )
A.2B.C.D.6

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1)。图2由弦图变化得到,它是由八个全等的直角三角形拼接而成。记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=21,则S2的值是      

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

小明将一张正方形包装纸,剪成图1所示形状,用它包在一个棱长为10dm的正方体的表面(不考虑接缝),如图2所示,小明所用正方形包装纸的边长至少为    dm;

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,点A是直线l外一点,在l上取两点B、C,分别以A、C为圆心,BC、AB为半径画弧,两弧交于点D,分别连接AB、AD、CD,则四边形ABCD一定是(     )

A.平行四边形      B.矩形            C.菱形            D.梯形

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知正方形ABCD的边长为1,连接AC、BD,CE平分∠ACD交BD于点E,则DE=              

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)操作发现:

如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,且点在G矩形ABCD内部.小明将BG延长交DC于点F,认为GF=DF,你同意吗?说明理由.
(2)问题解决:保持(1)中的条件不变,若DC=2DF,求值.
(3)类比探究: 保持(1)中的条件不变,若DC=n.DF,求的值(直接写出答案)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,ABCD的周长为16 cm,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE的周长为(    )

A.4 cm               B.6 cm            C.8 cm           D.10 cm

查看答案和解析>>

同步练习册答案