精英家教网 > 初中数学 > 题目详情

已知二次函数.
(1)求出该函数图象的顶点坐标,图象与x轴的交点坐标.
(2)当x在什么范围内时,y随x的增大而增大?
(3)当x在什么范围内时,

(1)顶点为(1,8),与x轴的交点为(﹣1,0),(3,0);(2);(3)

解析试题分析:(1)把函数解析式整理成顶点式形式,然后写出顶点坐标和对称轴即可,然后令y=0解方程求出x的值,即可得到与x轴的坐标即可;
(2)根据函数图象分别解答即可;
(3)根据函数图象分别解答即可.
试题解析:(1),∴顶点坐标为(1,8),对称轴为直线,令,则,整理得,解得,∴函数图象与x轴的交点坐标为(﹣1,0),(3,0);
函数图象如图所示;

(2)由图象可知:当时,y随x的增大而增大;
(3)当时,
考点:1.二次函数的图象;2.二次函数的性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

许多桥梁都采用抛物线型设计,小明将他家乡的彩虹桥按比例缩小后,绘成如下的示意图,图中的三条抛物线分别表示桥上的三条钢梁,x轴表示桥面,y轴经过中间抛物线的最高点,左右两条抛物线关于y轴对称.经过测算,中间抛物线的解析式为:y=-x2+10,并且BD=CD.

(1)求钢梁最高点离桥面的高度OE的长;
(2)求桥上三条钢梁的总跨度AB的长;
(3)若拉杆DE∥拉杆BN,求右侧抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,直线y=3x和y=2x分别与直线x=2相交于点A、B,将抛物线y=x2沿线段OB移动,使其顶点始终在线段OB上,抛物线与直线x=2相交于点C,设△AOC的面积为S,求S的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线y1=-x2+3与x轴交于A、B两点,与直线y2=-x+b相交于B、C两点.

(1)求直线BC的解析式和点C的坐标;
(2)若对于相同的x,两个函数的函数值满足y1≥y2,则自变量x的取值范围是     

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图1,已知抛物线y=-x2+bx+c经过点A(1,0),B(-3,0)两点,且与y轴交于点C.

(1) 求b,c的值。
(2)在第二象限的抛物线上,是否存在一点P,使得△PBC的面积最大?求出点P的坐标及△PBC的面积最大值.若不存在,请说明理由.
(3) 如图2,点E为线段BC上一个动点(不与B,C重合),经过B、E、O三点的圆与过点B且垂直于BC的直线交于点F,当△OEF面积取得最小值时,求点E坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线与直线交于C,D两点,其中点C在y轴上,点D的坐标为。点P是y轴右侧的抛物线上一动点,过点P作轴于点E,交CD于点F.

(1)求抛物线的解析式;
(2)若点P的横坐标为m,当m为何值时,以O,C,P,F为顶点的四边形是平行四边形?请说明理由。
(3)若存在点P,使,请直接写出相应的点P的坐标

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知点A (2,4) 和点B (1,0)都在抛物线上.

(1)求m、n;
(2)向右平移上述抛物线,记平移后点A的对应点为A′,点B的对应点为B′,若四边形A A′B′B为菱形,求平移后抛物线的表达式;
(3)记平移后抛物线的对称轴与直线AB′ 的交点为C,试在x轴上找一个点D,使得以点B′、C、D为顶点的三角形与△ABC相似.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm.如果点P由B出发沿BA方向点A匀速运动,同时点Q由A出发沿AC方向向点C匀速运动,它们的速度均为2cm/s.连接PQ,设运动的时间为t(单位:s)(0≤t≤4).解答下列问题:

(1)当t为何值时,PQ∥BC.
(2)设△AQP面积为S(单位:cm2),求S与t的函数关系式
(3)是否存在某时刻t,使四边形BPQC的面积为△ABC面积的三分之二?若存在,求出此时t的值;若不存在,请说明理由.
(4)如图2,把△AQP沿AP翻折,得到四边形AQPQ′.那么是否存在某时刻t,使四边形AQPQ′为菱形?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知抛物线与x轴交于点A,B,AB=2,与y轴交于点C,对称轴为直线x=2.

(1)求抛物线的函数表达式;
(2)设P为对称轴上一动点,求△APC周长的最小值;
(3)设D为抛物线上一点,E为对称轴上一点,若以点A,B,D,E为顶点的四边形是菱形,则点D的坐标为      

查看答案和解析>>

同步练习册答案