精英家教网 > 初中数学 > 题目详情

已知:如图,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E.

(1)求过点E、D、C的抛物线的解析式;

(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与

线段OC交于点G.如果EF=2OG,求点G的坐标.

(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与

AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存

在,请说明理由.

 

解:(1)∵OD平分∠AOC, ∠AOC=90°

∴∠AOD=∠DOC=45°

∵在矩形ABCD中,

∠BAO=∠B=∠BOC=90°,OA=BC=2,AB=OC=3

∴△AOD是等腰Rt△   ………………………………1分

∵∠AOE+∠BDC=∠BCD+∠BDC=90°

∴∠AOE=∠BCD

∴△AED≌△BDC

∴AE=DB=1

∴D(2,2),E(0,1),C(3,0)   …………………………2分

则过D、E、C三点的抛物线解析式为:  ……………3分

(2)DH⊥OC于点H,

∴∠DHO=90°

∵矩形 ABCD 中, ∠BAO=∠AOC=90°

∴四边形AOHD是矩形

∴∠ADH=90°.

∴∠1+∠2=∠2+∠3=90°

∴∠1=∠3

∵AD=OA=2,

∴四边形AOHD是正方形.

∴△FAD≌△GHD

∴FA=GH        ………………………………4分

∴设点 G(x,0),

∴OG=x,GH=2-x

∵EF=2OG=2x,AE=1,

∴2-x=2x-1,

∴x=1.

∴G(1,0)         ……………………………………………5分

 (3)由题意可知点P若存在,则必在AB上,假设存在点P使△PCG是等腰三角形

1)当点P为顶点,既 CP=GP时,

易求得P1(2,2),既为点D时,

此时点Q、与点P1、点D重合,

∴点Q1(2,2)                  ……………………………………………6分

2)当点C为顶点,既 CP=CG=2时, 易求得P2(3,2)          

∴直线GP2的解析式:

求交点Q: 

 

可求的交点()和(-1,-2)

 

∵点Q在第一象限

∴Q2)            ……………………………………………7分

 

3)当点G为顶点,既 GP=CG=2时, 易求得P3(1,2)

∴直线GP3的解析式:

求交点Q:

 

可求的交点(

 

∴Q3)          ……………………………………………8分

 

所以,所求Q点的坐标为Q1(2,2)、Q2)、Q3).

 

解析:略

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,直y=
3
2
x+b
与双曲线y=
16
x
相交于第一象限内的点A,AB、AC分别垂直于x轴、y轴,垂足分别为B、C,已知四边形ABCD是正方形,求直线所对应的一次函数的解析式以及它与x轴的交点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,原点O处有一乒乓球发射器向空中发射乒乓球,乒乓球飞行路线是一条抛物线,在地面上落点落在X轴上为点B.有人在线段OB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让乒乓球落入桶内.已知OB=4米,OC=3米,乒乓球飞行最大高度MN=5米,圆柱形桶的直径为0.5,高为0.3米(乒乓球的体积和圆柱形桶的厚度忽略不计).
(1)求乒乓球飞行路线抛物线的解析式;
(2)如果竖直摆放5个圆柱形桶时,乒乓球能不能落入桶内?
(3)当竖直摆放圆柱形桶
8,9,10,11或12
8,9,10,11或12
个时,乒乓球可以落入桶内?(直接写出满足条件的一个答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图1,在平面直角坐标系内,直线l1:y=-x+4与坐标轴分别相交于点A、B,与直线l2y=
13
x
相交于点C.
(1)求点C的坐标;
(2)如图1,平行于y轴的直线x=1交直线l1于点E,交直线l2于点D,平行于y轴的直x=a交直线l1于点M,交直线l2于点N,若MN=2ED,求a的值;
(3)如图2,点P是第四象限内一点,且∠BPO=135°,连接AP,探究AP与BP之间的位置关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:2012届重庆万州区岩口复兴学校九年级下第一次月考数学试卷(带解析) 题型:解答题

已知:直角梯形AOBC在平面直角坐标系中的位置如图,若AC∥OB,OC平分∠AOB,CB⊥x轴于B,点A坐标为(3 ,4). 点P从原点O开始以2个单位/秒速度沿x轴正向运动 ;同时,一条平行于x轴的直线从AC开始以1个单位/秒速度竖直向下运动 ,交OA于点D,交OC于点M,交BC于点E. 当点P到达点B时,直线也随即停止运动.

(1)求出点C的坐标;
(2)在这一运动过程中, 四边形OPEM是什么四边形?请说明理由。若
用y表示四边形OPEM的面积 ,直接写出y关于t的函数关系式及t的
范围;并求出当四边形OPEM的面积y的最大值?
(3)在整个运动过程中,是否存在某个t值,使⊿MPB为等腰三角形?
若有,请求出所有满足要求的t值.

查看答案和解析>>

科目:初中数学 来源:2013年浙江省湖州市中考数学模拟试卷(十一)(解析版) 题型:解答题

如图,在平面直角坐标系中,原点O处有一乒乓球发射器向空中发射乒乓球,乒乓球飞行路线是一条抛物线,在地面上落点落在X轴上为点B.有人在线段OB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让乒乓球落入桶内.已知OB=4米,OC=3米,乒乓球飞行最大高度MN=5米,圆柱形桶的直径为0.5,高为0.3米(乒乓球的体积和圆柱形桶的厚度忽略不计).
(1)求乒乓球飞行路线抛物线的解析式;
(2)如果竖直摆放5个圆柱形桶时,乒乓球能不能落入桶内?
(3)当竖直摆放圆柱形桶______个时,乒乓球可以落入桶内?(直接写出满足条件的一个答案)

查看答案和解析>>

同步练习册答案