精英家教网 > 初中数学 > 题目详情

【题目】《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开放术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.

《九章算术》中记载:今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几 何?

译文:假设有几个人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:有几个人共同出钱买鸡?鸡的价钱是多少:

设有x个人共同买鸡,鸡的价钱是y钱,根据题意可列方程组为__________

【答案】

【解析】试题解析:设人数有人,鸡的价钱是钱,根据每人出9钱,多余11钱得出等量关系一:鸡的价钱=9×买鸡人数-11;根据每人出6钱,还缺16钱得出等量关系二:鸡的价钱=6×买鸡人数+16,依此两个等量关系列出方程组为:

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,∠AOB90°.∠BOC30°OM平分∠AOCON平分∠BOC

1)求∠MON的度数;

2)若∠BOC60°,其他条件不变,则∠MON   

3)若∠AOBα,其他条件不变,求∠MON的度数;

4)从上面的结果能看出什么规律?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).

(1)直接用含t的代数式分别表示:QB=   ,PD=   

(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;

(3)如图2,在整个运动过程中,求出线段PQ中点M所经过的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知四边形ABCD是菱形,AB=4,ABC=60°EAF的两边分别与射线CB,DC相交于点E,F,且EAF=60°

1如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;

2如图2,当点E是线段CB上任意一点时点E不与B、C重合,求证:BE=CF;

3如图3,当点E在线段CB的延长线上,且EAB=15°时,求点F到BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示

(1)求证:△ABE≌△ADF;

(2)试判断四边形AECF的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知A(n,-2),B(1,4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点,直线ABy轴交于点C.

(1)求反比例函数和一次函数的关系式;

(2)AOC的面积;

(3)求不等式kx+b-<0的解集(直接写出答案).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是由若干个完全相同的小正方体组成的一个几何体.

1)请用粗实线在虚线网格中顺次画出这个几何体的主视图、左视图和俯视图;

2)如果在这个几何体上拿掉一些小正方体,并保持这个几何体的主视图和俯视图不变,那么最多可以拿掉___________小正方体;

3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多可以再添加________个小正方体.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在平面直角坐标系xOy中,抛物线y=ax2﹣2x+c与x轴交于点A和点B(1,0),与y轴相交于点C(0,3).

(1)求抛物线的解析式和顶点D的坐标;

(2)求证:∠DAB=∠ACB;

(3)点Q在抛物线上,且ADQ是以AD为底的等腰三角形,求Q点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线y=mx2﹣2mx+nm0)的顶点为A,与x轴交于BC两点(点B在点C左侧),与y轴正半轴交于点D,连接AD并延长交x轴于E,连ACDCSDECSAEC=34

1)求点E的坐标;

2AEC能否为直角三角形?若能,求出此时抛物线的函数表达式;若不能,请说明理由.

查看答案和解析>>

同步练习册答案