精英家教网 > 初中数学 > 题目详情
如图①,在Rt△ABC中,∠C=90°,边BC的长为20cm,边AC的长为hcm,在此三角形内有一个矩形CFED,点D,E,F分别在AC,AB,BC上,设AD的长为xcm,矩形CFED的面积为y(单位:cm2).
(1)当h等于30时,求y与x的函数关系式;(不要求写出自变量x的取值范围)
(2)在(1)的条件下,矩形CFED的面积能否为180cm2?请说明理由;
(3)若y与x的函数图象如图②所示,求此时h的值.
(参考公式:二次函数y=ax2+bx+c,当x=-
b
2a
时,y最大(小)值=
4ac-b2
4a
.)
(1)∵AC=30,AD=x,
∴CD=30-x.
∵四边形CFED为矩形,
∴DEBC.
DE
BC
=
AD
AC
,即
DE
20
=
x
30

∴DE=
2
3
x.
∴y=
2
3
x(30-x).
即y=-
2
3
x2+20x.

(2)∵
4ac-b2
4a
=
4×(-
2
3
)×0-202
4×(-
2
3
)
=150

∴y的最大值为150.
∵150<180,
∴矩形CFED的面积不能为180cm2

(3)由图象可知,当x=10时,y=150.
当x=10时,CD=h-10,DE=
200
h

200
h
(h-10)=150,
解得h=40.
经检验h=40是方程的解.
∴h=40.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=x2+bx-3a过点A(1,0),B(0,-3),与x轴交于另一点C.
(1)求抛物线的解析式;
(2)若在第三象限的抛物线上存在点P,使△PBC为以点B为直角顶点的直角三角形,求点P的坐标;
(3)在(2)的条件下,在抛物线上是否存在一点Q,使以P,Q,B,C为顶点的四边形为直角梯形?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,己知Rt△OAB的斜边OA在x轴正半轴上,直角顶点B在第一象限,OA=5,OB=
5

(1)求A、B两点的坐标;
(2)求经过O、A、B三点且对称轴平行于y轴的抛物线的解析式,并确定抛物线顶点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在等腰梯形ABCD中,ADBC,BA=CD,AD的长为4,S梯形ABCD=9.已知点A、B的坐标分别为(1,0)和(0,3).
(1)求点C的坐标;
(2)取点E(0,1),连接DE并延长交AB于P试猜想DF与AB之间的关系,并证明你的结论;
(3)将梯形ABCD绕点A旋转180°后成梯形AB′C′D′,求对称轴为直线x=3,且过A、B′两点的抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,临沂三河口大桥有一段抛物线行的工桥梁,抛物线的表达式为y=ax2+bx,小强骑自行车从拱梁一端O沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10秒时和20秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需______秒.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

画出抛物线y=4(x-3)2+2的大致图象,写出它的最值和增减性.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:在平面直角坐标系xOy中,抛物线y=x2+bx+c经过A(1,1)、B(0,4)两点,M为抛物线的顶点.
(1)求这条抛物线的表达式及顶点M的坐标;
(2)设由(1)求得的抛物线的对称轴为直线l,点A关于直线l的对称点为点C,AC与直线l相交于点D,联结OD、OC.请直接写出C与D两点的坐标,并求∠COM+∠DOM的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线经过原点O和x轴上另一点A,它的对称轴x=2与x轴交于点C,直线y=-2x-1经过抛物线上一点B(-2,m),且与y轴、直线x=2分别交于点D、E.
(1)求m的值及该抛物线对应的函数关系式;
(2)求证:①CB=CE;②D是BE的中点;
(3)若P(x,y)是该抛物线上的一个动点,是否存在这样的点P,使得PB=PE?若存在,试求出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

蔬菜基地种植某种蔬菜,由市场行情分析知,1月份至6月份这种蔬菜的上市时间x(月份)与市场售价p(元/千克)的关系如下表:
上市时间x(月份)123456
市场售价p(元/千克)10.597.564.53
这种蔬菜每千克的种植成本y(元/千克)与上市时间x(月份)满足一个函数关系,这个函数的图象是抛物线的一段(如图).

(1)写出上表中表示的市场售价p(元/千克)关于上市时间x(月份)的函数关系式______;
(2)若图中抛物线过A,B,C点,写出抛物线对应的函数关系式______;
(3)由以上信息分析,______月份上市出售这种蔬菜每千克的收益最大,最大值为______元(收益=市场售价一种植成本).

查看答案和解析>>

同步练习册答案