精英家教网 > 初中数学 > 题目详情

由于水资源缺乏,B,C两地不得不从黄河上的水站A处引水,这就需要在A,B,C之间铺设地下输水管道.有人设计了三种铺设方案:如图,图甲中实线表示铺设线路;在图乙中,AD⊥BC于D;在图丙中,OA=OB=OC.为减少渗漏,节约水资源,并降低工程造价,铺设线段尽量缩短,已知△ABC是一个边长为a的等边三角形,请你通过计算,判断哪个铺设方案最好?

答案:
解析:

  解  甲方案所示线路总长为:AB+AC=2a.乙方案所示线路总长为:AD+BC=a+a=(+1)a.丙方案所示线路总长为:OA+OB+OC=a.

  ∵+1<2,∴a<(+1)a<2a.故丙方案的铺设方法最合理.

  分析  利用几何知识,表示出三种方案中各线路的长度,再运用本章知识,比较各种线路的长短,得出科学合理的设计方案.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,由于水资源缺乏,B、C两地不得不从黄河上的扬水站A引水,这就需要A、B、C之间铺设地下输水管道,有人设计了三种铺设方案:如图①②③,图中实线表示管道铺设线路,在图②中,AD垂直BC于D;在图③中,OA=OB=OC.为减少渗漏,节约水资源,并降低工程造价,铺设线路应尽量缩短,已知△ABC恰好是一个边长为a的等边三角形,那么通过计算,你认为最好的铺设方案是方案
 

精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

由于水资源缺乏,B,C两地不得不从A地引水,这就需要在A,B,C三地之间铺设地下输水管道.现有三种设计方案:如图,图中实线表示管道铺设线路,在图(2)中,AD⊥BC于点D:在图(3)中,OA=OB=OC.若△ABC是边长为a的等边三角形,为使铺设线路最短,哪种方案最好?(
2
≈1.141,
3
≈1.732)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

由于水资源缺乏,B,C两地不得不从黄河上的扬水站A处引水,这就需要在A,B,C之间铺设地下输水管道.有人设计了3种铺设方案(图中实线表示管道铺设线路).在图(2)中,AD⊥BC于点D,且BC=DC;在图(3)中,OA=OB=OC,且AO的延长线交BC于点E,AE⊥BC,BE=EC,OE=
12
OB
.为减少渗漏,节约水资源,并降低工程造价,铺设线路应尽量缩短.若△ABC恰好是一个边长为a的等边三角形,请你通过计算,判断哪一个铺设方案最好.

查看答案和解析>>

科目:初中数学 来源: 题型:

由于水资源缺乏,B、C两地不得不从黄河上的扬水站A处引水,这就需要在A、B、C之间铺设地下管道,有人设计了3种方案:如图1中实线表示管道铺设路线,在图2中,AD⊥BC于D,在图3中,OA=OB=OC,且交点到顶点A的距离为三角形高的
23
,为减少渗漏、节约水资源,并降低工程造价,铺设路线尽量缩短.已知ABC是一个边长为a的等边三角形,请你通过计算,判断哪种铺高方案好?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

由于水资源缺乏,B,C两地不得不从黄河上的扬水站A处引水,这就需要在A,B,C之间铺设地下输水管道.有人设计了3种铺设方案(图中实线表示管道铺设线路).在图(2)中,AD⊥BC于点D,且BC=DC;在图(3)中,OA=OB=OC,且AO的延长线交BC于点E,AE⊥BC,BE=EC,OE=数学公式.为减少渗漏,节约水资源,并降低工程造价,铺设线路应尽量缩短.若△ABC恰好是一个边长为a的等边三角形,请你通过计算,判断哪一个铺设方案最好.

查看答案和解析>>

同步练习册答案