精英家教网 > 初中数学 > 题目详情
已知:如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点,点A的坐标为(-1精英家教网,0).
(1)求抛物线的解析式及顶点D的坐标;
(2)设点P是在第一象限内抛物线上的一个动点,求使与四边形ACDB面积相等的四边形ACPB的点P的坐标;
(3)求△APD的面积.
分析:(1)根据抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,3),与x轴交于A(-1,0),代入即可求出a、c的值,即得到解析式,化成顶点式就能求出顶点坐标;
(2)连接BC,过点D作DE⊥x轴于点E,令y=0,求出B的坐标,根据点的坐标和面积公式能求出四边形ACDB和△BCD的面积,根据B、C的坐标能求出直线BC,设直线DP的函数解析式为y=-x+b,把点D(1,4)代入即可求出直线DP的函数解析式,求出y=-x+5和y=-x2+2x+3组成的方程组的解即可;
(3)根据对称得到△APD≌△BCD,根据全等三角形的性质即可得到答案.
解答:解:(1)∵抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,3),与x轴
交于A(-1,0)
a+2a+c=0
c=3

解得
a=-1
c=3

∴抛物线的解析式为y=-x2+2x+3,
∵y=-(x2-2x)+3=-(x2-2x+1-1)+3=-(x-1)2+4,
∴顶点D的坐标为(1,4),
答:抛物线的解析式是y=-x2+2x+3,顶点D的坐标是(1,4).
精英家教网
(2)解:连接BC,过点D作DE⊥x轴于点E.
令y=0则-x2+2x+3=0,
∴x1=-1,x2=3
∴点B的坐标为(3,0),
∴S四边形ACDB=S△AOC+S梯形OEDC+S△EBD=
1
2
×1×3+
1
2
×(3+4)×1+
1
2
×2×4=9

S△ABC=
1
2
×4×3=6

∴S△BCD=3
∵点P是在第一象限内抛物线上的一个动点,S四边形ACDB=S四边形ACPB
∴S△BCP=S△BCD=3,
∴点P是过D且与直线BC平行的直线和抛物线的交点,精英家教网
而直线BC的函数解析式为y=-x+3,
∴设直线DP的函数解析式为y=-x+b,过点D(1,4),
∴-1+b=4,b=5,
∴直线DP的函数解析式为y=-x+5,
把y=-x+5代入y=-x2+2x+3中,解得x1=1,x2=2,
∴点P的坐标为(2,3),
答:与四边形ACDB面积相等的四边形ACPB的点P的坐标是(2,3).

(3)解:∵点P与点C关于DE对称,点B与点A关于DE对称,
∴△APD≌△BCD,
∴S△APD=S△BCD=3,
答:△APD的面积是3.
点评:本题主要考查对二次函数图象上点的坐标特征,解二元一次方程组,三角形的面积,全等三角形的性质和判定,二次函数与X轴的交点等知识点的理解和掌握,此题是一个拔高的题目,综合性比较强,有一定的难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图,抛物线y=ax2+bx+c与x轴交于A、B两点,它们的横坐标分别为-1和3,精英家教网与y轴交点C的纵坐标为3,△ABC的外接圆的圆心为点M.
(1)求这条抛物线的解析式;
(2)求图象经过M、A两点的一次函数解析式;
(3)在(1)中的抛物线上是否存在点P,使过P、M两点的直线与△ABC的两边AB、BC的交点E、F和点B所组成的△BEF和△ABC相似?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线的顶点为点D,与y轴相交于点A,直线y=ax+3与y轴也交于点A,矩形ABCO的顶点B在精英家教网此抛物线上,矩形面积为12,
(1)求该抛物线的对称轴;
(2)⊙P是经过A、B两点的一个动圆,当⊙P与y轴相交,且在y轴上两交点的距离为4时,求圆心P的坐标;
(3)若线段DO与AB交于点E,以点D、A、E为顶点的三角形是否有可能与以点D、O、A为顶点的三角形相似,如果有可能,请求出点D坐标及抛物线解析式;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•宁化县质检)已知:如图,抛物线y=ax2+bx+c与x轴交于点A(1-
3
,0)和点B,将抛物线沿x轴向上翻折,顶点P落在点P′(1,3)处.
(1)求原抛物线的解析式;
(2)在原抛物线上,是否存在一点,与它关于原点对称的点也在该抛物线上?若存在,求满足条件的点的坐标;若不存在,说明理由.
(3)学校举行班徽设计比赛,九年级(5)班的小明在解答此题时顿生灵感:过点P′作x轴的平行线交抛物线于C、D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比
5
-1
2
(约等于0.618).请你计算这个“W”图案的高与宽的比到底是多少?(参考数据:
5
≈2.236
6
≈2.449
,结果精确到0.001)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A,B,点A的坐标为(4,0).
(1)求该抛物线的解析式;
(2)若点M在抛物线上,且△ABC与△ABM的面积相等,直接写出点M的坐标;
(3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
(4)若平行于x轴的动直线l与线段AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出直线l的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,抛物线y=x2+px+q与x轴相交于A、B两点,与y轴交于点C,且OA≠OB,OA=OC,设抛物线的顶点为点P,直线PC与x轴的交点D恰好与点A关于y轴对称.
(1)求p、q的值.
(2)在题中的抛物线上是否存在这样的点Q,使得四边形PAQD恰好为平行四边形?若存在,求出点Q的坐标;若不存在,请说明理由.
(3)连接PA、AC.问:在直线PC上,是否存在这样点E(不与点C重合),使得以P、A、E为顶点的三角形与△PAC相似?若存在,求出点E的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案