精英家教网 > 初中数学 > 题目详情

已知:如图,OAOB为⊙O的半径, CD分别为OAOB的中点,求证:AD=BC

 

 

【答案】

证明见解析.

【解析】

试题分析:已知OAOB为⊙O的半径.且有公共角∠O,则可以利用SAS证明△AOD≌△BOC,根据全等三角形的对应边相等得到AD=BC

试题解析:OAOB为⊙O的半径,CD分别为OAOB的中点,

OA=OBOC=OD

在△AOD与△BOC中,

∴△AOD≌△BOCSAS).

AD=BC

考点: 全乖三角形的判定与性质.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

25、已知,如图,OA⊥OB,OD平分∠AOC,∠BOC=40°.求∠AOD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

26、说理过程填空
①已知:如图,OA⊥OB,OC⊥OD,说明∠1=∠2.

解:∵OA⊥OB(已知)
∴∠1+
∠AOC
=90°,
OC⊥OD
(已知),
∴∠2+
∠AOC
=90°,
∠1=∠2
(同角的余角相等)

②已知:如图,∠A=∠D,说明∠B=∠C.

解:∵∠A=∠D
(已知)

AB∥CD

∴∠B=∠C
(两直线平行,内错角相等)

查看答案和解析>>

科目:初中数学 来源: 题型:

13、已知:如图,OA,OB为⊙O的半径,C,D分别为OA,OB的中点,求证:AD=BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

40、已知:如图,OA、OB、OC是⊙O的三条半径,∠AOC=∠BOC,M、N分别是OA、OB的中点.求证:MC=NC.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•鞍山)已知:如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB的度数为(  )

查看答案和解析>>

同步练习册答案