【题目】设是不小于的实数,关于的方程有两个不相等的实数根、,
(1)求的取值范围;
(2)若,求值;
(3)求的最大值.
【答案】(1)m<1;(2);(3)10.
【解析】
(1)根据x2+2(m-2)x+m2-3m+3=0有两个不相等的实数根x1,x2,得出△=[2(m-2)]2-4×1×(m2-3m+3)>0,即可求出m的范围.
(2)首先根据根的判别式求出m的取值范围,利用根与系数的关系,求出符合条件的m的值.
(3)把利用根与系数的关系得到的关系式代入代数式,细心化简,结合m的取值范围求出代数式的最大值.
(1)∵x2+2(m-2)x+m2-3m+3=0有两个不相等的实数根x1,x2,
∴△=[2(m-2)]2-4×1×(m2-3m+3)>0
∴m<1;
(2)∵x12+x22=(x1+x2)2-2x1x2=4(m-2)2-2(m2-3m+3)=2m2-10m+10=6
∴m= ,
∵-1≤m<1,
∴m=;
(3)
=
=2(m23m+1)=2(m)2(-1≤m<1).
m=0时,原式=0,
综上所述,当m=-1时,式子取最大值为10.
科目:初中数学 来源: 题型:
【题目】若x=﹣m和x=m﹣4时,多项式ax2+bx+4a+1的值相等,且m≠2.当﹣1<x<2时,存在x的值,使多项式ax2+bx+4a+1的值为3,则a的取值范围是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,AB=AC=4.一动点P从点B出发,沿BC方向以每秒1个单位长度的速度匀速运动,到达点C即停止.在整个运动过程中,过点P作PD⊥BC与Rt△ABC的直角边相交于点D,延长PD至点Q,使得PD=QD,以PQ为斜边在PQ左侧作等腰直角三角形PQE.设运动时间为t秒(t>0).
(1)在整个运动过程中,设△ABC与△PQE重叠部分的面积为S,请直接写出S与t之间的函数关系式以及相应的自变量t的取值范围;
(2)当点D在线段AB上时,连接AQ、AP,是否存在这样的t,使得△APQ成为等腰三角形?若存在,求出对应的t的值;若不存在,请说明理由;
(3)当t=4秒时,以PQ为斜边在PQ右侧作等腰直角三角形PQF,将四边形PEQF绕点P旋转,PE与线段AB相交于点M,PF与线段AC相交于点N.试判断在这一旋转过程中,四边形PMAN的面积是否发生变化?若发生变化,求出四边形PMAN的面积y与PM的长x之间的函数关系式以及相应的自变量x的取值范围;若不发生变化,求出此定值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某店只销售某种进价为40元/kg的产品,已知该店按60元kg出售时,每天可售出100kg,后来经过市场调查发现,单价每降低1元,则每天的销售量可增加10kg.
(1)若单价降低2元,则每天的销售量是_____千克,每天的利润为_____元;若单价降低x元,则每天的销售量是_____千克,每天的利润为______元;(用含x的代数式表示)
(2)若该店销售这种产品计划每天获利2240元,单价应降价多少元?
(3)当单价降低多少元时,该店每天的利润最大,最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形OABC的面积为4,点O为坐标原点,点B在函数y(k<0,x<0)的图象上,点P(m,n)是函数y(k<0,x<0)的图象上异于B的任意一点,过点P分别作x轴、y轴的垂线,垂足分别为E、F.
(1)设矩形OEPF的面积为S1,求S1;
(2)从矩形OEPF的面积中减去其与正方形OABC重合的面积,剩余面积记为S2.写出S2与m的函数关系式,并标明m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD是角平分钱,点E在AC上,且∠EAD=∠ADE.
(1)求证:△DCE∽△BCA;
(2)若AB=3,AC=4.求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AB'C'的位置,使得C′C∥AB,则∠CAB'等于( )
A. 30°B. 25°C. 15°D. 10°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】宁波某公司经销一种绿茶,每千克成本为元.市场调查发现,在一段时间内,销售量(千克)随销售单价(元/千克)的变化而变化,具体关系式为:.设这种绿茶在这段时间内的销售利润为(元),解答下列问题:
(1)求与的关系式;
(2)当销售单价取何值时,销售利润的值最大,最大值为多少?
(3)如果物价部门规定这种绿茶的销售单价不得高于元/千克,公司想要在这段时间内获得元的销售利润,销售单价应定为多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com