精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,RtAOB的斜边OAx轴的正半轴上,∠OBA=90°,且tanAOB=OB=,反比例函数的图象经过点B

1)求反比例函数的表达式;

2)若AMBAOB关于直线AB对称,一次函数y=mx+n的图象过点MA,求一次函数的表达式.

【答案】(1);(2)

【解析】

解:(1)过点BBDOA于点D

BD=a

tanAOB==

OD=2BD

∵∠ODB=90°OB=

a2+2a2=2

解得a=±2(舍去﹣2),

a=2

OD=4

B42),

k=4×2=8

∴反比例函数表达式为:

2)∵tanAOB=OB=

AB=OB=

OA===5

A50).

AMBAOB关于直线AB对称,B42),

OM=2OB

M84).

把点MA的坐标分别代入y=mx+n,得:

解得:

故一次函数表达式为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在中,,点P从点B出发,沿BC以每秒2个单位长度的速度向终点C运动,同时点Q从点C出发,沿折线以每秒5个单位长度的速度运动,到达点A时,点Q停止1秒,然后继续运动.分别连结PQBQ.设的面积为S,点P的运动时间为秒.

1)求点ABC之间的距离.

2)当时,求的值.

3)求S之间的函数关系式.

4)当线段PQ的某条边垂直时,直接写出的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中(如图),已知函数的图像和反比例函数的在第一象限交于A点,其中点A的横坐标是1

1)求反比例函数的解析式;

2)把直线平移后与轴相交于点B,且,求平移后直线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示的曲边三角形可按下述方法作出:作等边三角形;分别以点为圆心,以的长为半径作.三段弧所围成的图形就是一个曲边三角形,如果一个曲边三角形的周长为,那么这个曲边三角形的面积是___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线轴交于点和点,与轴交于点,点坐标为,点坐标为,点是抛物线的顶点,过点轴的垂线,垂足为,连接

1)求抛物线的解析式及点的坐标;

2)点是抛物线上的动点,当时,求点的坐标;

3)若点轴上方抛物线上的动点,以为边作正方形,随着点的运动,正方形的大小、位置也随着改变,当顶点恰好落在轴上时,请直接写出点的横坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知BC是⊙O的直径,点DBC延长线上一点,AB=AD,AE是⊙O的弦,∠AEC=30°.

(1)求证:直线AD是⊙O的切线;

(2)若AEBC,垂足为M,O的半径为4,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在矩形ABCD中,动点EA出发,沿A→B→C方向运动,当点E到达点C时停止运动,过点EEFAECD于点F,设点E运动路程为x,CF=y,如图2所表示的是yx的函数关系的大致图象,给出下列结论:①a=3;②当CF=时,点E的运动路程为,则下列判断正确的是(  )

A. ①②都对 B. ①②都错 C. ①对②错 D. ①错②对

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,弦CDAB相交,连接CO,过点D作⊙O的切线,与AB的延长线交于点E,若DEAC,∠BAC40°,则∠OCD的度数为(

A.65°B.30°C.25°D.20°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形中,连接,点上一点,连接为等边三角形,,则_________

查看答案和解析>>

同步练习册答案