精英家教网 > 初中数学 > 题目详情
如图,B为双曲线y=
1
x
(x>0)上一点,直线AB平行于y轴交直线y=x于点A,求(OB+AB)(OB-AB)的值.
如图,∵B为双曲线y=
1
x
(x>0)上一点,
故设B(a,
1
a
).
又∵直线AB平行于y轴交直线y=x于点A,
∴A(a,a),
∴AB=a-
1
a
,OB=
a2+(
1
a
)2

∴OB2-AB2=[a2-(
1
a
2]-(a-
1
a
2=2,即(OB+AB)(OB-AB)=OB2-AB2=2,.
∴(OB+AB)(OB-AB)的值是2.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知,如图:点A(
3
,1)在反比例函数图象上,将y轴绕点O顺时针旋转30°,与反比例函数在第一象限内交于点B,
求:(1)反比例函数的解析式;
(2)求点B的坐标及△AOB的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

根据图(1)所示的程序,得到了y与x的函数,其图象如图(2)所示.若点M是y轴正半轴上任意一点,过点M作PQx轴交图象于点P,Q,连接OP,OQ.以下结论:
①x<0时,y=-
2
x

②x<0时,y随x的增大而减小;
③PQ=3PM;
④∠POQ可以等于90°;
则其中正确结论有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在直角坐标系中,矩形OABC的顶点A、B在双曲线y=
k
x
(x>0)上,BC与x轴交于点D.若点A的坐标为(1,2),则点B的坐标为(  )
A.(3,
2
3
B.(4,
1
2
C.(
9
2
4
9
D.(5,
2
5

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,Rt△OAB的斜边OA在x轴上,点B在第一象限,OA:OB=5:4.边AB的垂直平分线分别交AB、x轴于点C、D,线段CD交反比例函数y=
3
x
的图象于点E.当BC=CE时,以DE为边的正方形的面积是(  )
A.
25
29
B.1C.
30
29
D.
36
29

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

李先生参加了清华同方电脑公司推出的分期付款购买电脑活动,他购买的电脑价格为1.2万元,交了首付之后每月付款y元,x月结清余款.y与x的函数关系如图所示,试根据图象提供的信息回答下列问题.
(1)确定y与x的函数关系式,并求出首付款的数目;
(2)如打算每月付款不超过500元,李先生至少几个月才能结清余款?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点D在反比例函数y=
k
x
(k>0)上,点C在x轴的正半轴上且坐标为(4,O),△ODC是以CO为斜边的等腰直角三角形.
(1)求反比例函数的解析式;

(2)点B为横坐标为1的反比例函数图象上的一点,BA、BE分别垂直x轴和y轴,连接OB,将OABE沿OB折叠,使A点落在点A′处,A′B与y轴交于点F,求OF的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知反比例函数y=
k
x
(k≠0)和一次函数y=-x+8.
(1)若一次函数和反函数的图象交于点(4,m),求m和k;
(2)k满足什么条件时,这两个函数图象有两个不同的交点;
(3)设(2)中的两个交点为A、B,试判断∠AOB是锐角还是钝角?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

矩形的面积为8,则一组邻边长y与x之间的函数图象大致是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案