精英家教网 > 初中数学 > 题目详情
(2012•上虞市模拟)复习完“四边形”内容后,老师出示下题:
如图1,直角三角板的直角顶点P在正方形ABCD的对角线BD上移动,一直角边始终经过点C,另一直角边交直线AB于点Q,连接QC.求证:∠PQC=∠DBC.
(1)请你完成上面这道题;
(2)完成上题后,同学们在老师的启发下进行了反思,提出许多问题,如:
①如图2,若将题中的条件“正方形ABCD”改为“矩形ABCD”,其余条件都不变,是否仍能得到∠PQC=∠DBC?
②如图3,若将题中的条件“正方形ABCD”改为“直角梯形ABCD”,其余条件都不变,是否仍能得到∠PQC=∠DBC?

请你对上述反思①和②作出判断,在下列横线上填写“是”或“否”:①
;②
.并对①、②中的判断,选择其中一个说明理由.
分析:(1)首先过点P作PM⊥BC,PN⊥AB,垂足分别为M、N.由四边形ABCD为正方形,易证得△MPC≌△NPQ,即可得PC=PQ,即可得∠PQC=∠PCQ=45°=∠DBC.
(2)①首先过点P作PM⊥BC,PN⊥AB,垂足分别为M、N.由四边形ABCD是矩形,易得四边形PNBM为矩形,即可得△MPC∽△NPQ,由相似三角形的对应边成比例,可得
PC
PQ
=
MP
NP
=
MP
MB
,又由在Rt△PBM中,tan∠PBM=
PM
BM
与在Rt△PQC中tan∠PQC=
PC
PQ
,即可证得∠PQC=∠DBC.
②首先过点P作PM⊥BC,PN⊥AB,垂足分别为M、N.由四边形ABCD是直角梯形,易得四边形PNBM为矩形,即可得△MPC∽△NPQ,由相似三角形的对应边成比例,可得
PC
PQ
=
MP
NP
=
MP
MB
,又由在Rt△PBM中,tan∠PBM=
PM
BM
与在Rt△PQC中tan∠PQC=
PC
PQ
,即可证得∠PQC=∠DBC.
解答:证明:(1)∵四边形ABCD为正方形,
∴∠ABC=90°,∠ABD=∠DBC=
1
2
∠ABC=45°,
过点P作PM⊥BC,PN⊥AB,垂足分别为M、N.
则∠PNB=∠PMB=90°,MP=NP.
∴∠MPN=90°,即∠QPN+∠QPM=90°.
∵∠CPM+∠QPM=∠QPC=90°,
∴∠CPM=∠QPN,
在△MPC和△NPQ中,
∠CPM=∠QPN
MP=NP
∠PMC=∠PNQ=90°

∴△MPC≌△NPQ(ASA).                       
∴PC=PQ.
∴∠PQC=∠PCQ=45°=∠DBC.

(2)①是;②是.               
①的证明:如图2,
过点P作PM⊥BC,PN⊥AB,垂足分别为M、N.
∵四边形ABCD是矩形,
∴∠NBM=∠PMB=∠PNB=90°,
∴四边形PNBM为矩形,则MB=NP,∠MPN=90°.
∵∠CPM+∠QPM=∠QPC=90°,∠QPN+∠QPM=∠MPN=90°,
∴∠CPM=∠QPN,
又∵∠PMC=∠PNQ=90°,
∴△MPC∽△NPQ,
PC
PQ
=
MP
NP

∵PN=MB,
PC
PQ
=
MP
NP
=
MP
MB

在Rt△PBM中,tan∠PBM=
PM
BM

在Rt△PQC中tan∠PQC=
PC
PQ

∴tan∠PBM=tan∠PQC,
∴∠PBM=∠PQC,
即∠PQC=∠DBC.
②的证明:如图3,
过点P作PM⊥BC,PN⊥AB,垂足分别为M、N,
∵四边形ABCD是梯形,
∴∠NBM=∠PMB=∠PNB=90°,
∴四边形PNMB是矩形,则MB=NP,∠MPN=90°.
∵∠CPM+∠QPM=∠QPC=90°,∠QPN+∠QPM=∠MPN=90°,
∴∠CPM=∠QPN,
又∵∠PMC=∠PNQ=90°,
∴△MPC∽△NPQ,
PC
PQ
=
MP
NP

∵PN=MB,
PC
PQ
=
MP
NP
=
MP
MB

在Rt△PBM中,tan∠PBM=
PM
BM

在Rt△PQC中tan∠PQC=
PC
PQ

∴tan∠PBM=tan∠PQC,
∴∠PBM=∠PQC,即∠PQC=∠DBC.
点评:此题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的性质、直角梯形的性质以及正切函数的定义.此题难度较大,注意掌握辅助线的作法是解此题的关键,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•漳州模拟)某几何体的三视图如图所示,则这个几何体是 (  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•上虞市模拟)如图,△AOB为等边三角形,点B的坐标为(-2,0),过点C(2,0)作直线l交AO于点D,交AB于E,点E在反比例函数y=
k
x
(x
<0)的图象上,若△ADE和△DCO(即图中两阴影部分)的面积相等,则k值为
-
3
3
4
-
3
3
4

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•上虞市模拟)如图,将量角器和含30°角(图中的∠BAC)的一块直角三角板紧靠着放在同一平面内,使D,C,B三点在同一条直线上,量角器的非圆弧边DC的长恰好是该三角板一边BC的2倍,过点A作量角器圆弧所在圆的切线,切点为E,则点E所对应的量角器上的刻度数是
60
60
度(只要求写出锐角的度数).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•上虞市模拟)如图,已知平面直角坐标系中两点A(-1,5)、B(-4,1).
(1)将A、B两点沿x轴分别向右平移5个单位,得到点A1、B1,请画出四边形ABB1A1,并直接写出这个四边形的面积;
(2)画一条直线,将四边形ABB1A1分成两个全等的图形,并满足这两个图形都是轴对称图形.

查看答案和解析>>

同步练习册答案