【题目】如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A、B、C,请在网格中进行下列操作:
(1)请在图中确定该圆弧所在圆心D点的位置,D点坐标为 ;
(2)连接AD、CD,求⊙D的半径及扇形DAC的圆心角度数;
(3)若扇形DAC是某一个圆锥的侧面展开图,求该圆锥的底面半径.
【答案】D(2,0)
【解析】(1)找到AB,BC的垂直平分线的交点即为圆心坐标;
(2)利用勾股定理可求得圆的半径;易得△AOD≌△DEC,那么∠OAD=∠CDE,即可得到圆心角的度数为90°;
(3)求得弧长,除以2π即为圆锥的底面半径.
解:(1)如图;D(2,0)
(2)如图;AD===2;
作CE⊥x轴,垂足为E.
∵△AOD≌△DEC,
∴∠OAD=∠CDE,
又∵∠OAD+∠ADO=90°,
∴∠CDE+∠ADO=90°,
∴扇形DAC的圆心角为90度;
(3)∵弧AC的长度即为圆锥底面圆的周长.l弧===π,
设圆锥底面圆半径为r,则2πr=π,
∴r=.
“点睛”本题用到的知识点为:非直径的弦的垂直平分线经过圆心;圆锥的弧长等于底面周长.
科目:初中数学 来源: 题型:
【题目】下列两个多项式相乘,不能运用平方差公式计算的是( )
A.(﹣m+n)(m﹣n)B.(﹣m+n)(m+n)
C.(﹣m﹣n)(﹣m+n)D.(m﹣n)(n+m)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D的切线交BC于点E。
(1)求证:EB=EC
(2)若以点O、D、E、C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,-1)和C(4,5)三点.
(1)求二次函数的解析式;
(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;
(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在七边形ABCDEFG中,AB,ED的延长线相交于O点.若图中
∠1,∠2,∠3,∠4的角度和为220°,则∠BOD的度数为( )
A.40°
B.45°
C.50°
D.60°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com