¹Û²ìÏÂÁи÷ʽ¼°ÑéÖ¤¹ý³Ì£º
1
2
-
1
3
=
1
2
2
3
£¬ÑéÖ¤
1
2
-
1
3
=
1
2¡Á3
=
2
22¡Á3
=
1
2
2
3
£»
1
2
(
1
3
-
1
4
)
=
1
3
3
8
£¬ÑéÖ¤
1
2
(
1
3
-
1
4
)
=
1
2¡Á3¡Á4
=
3
2¡Á32¡Á4
=
1
3
3
8
£»
1
3
(
1
4
-
1
5
)
=
1
4
4
15
£¬ÑéÖ¤
1
3
(
1
4
-
1
5
)
=
1
3¡Á4¡Á5
=
4
3¡Á42¡Á5
=
1
4
4
15
¡­
£¨1£©°´ÕÕÉÏÊöÈý¸öµÈʽ¼°ÆäÑéÖ¤¹ý³ÌÖеĻù±¾Ë¼Ï룬²ÂÏë
1
4
(
1
5
-
1
6
)
µÄ±äÐνá¹û²¢½øÐÐÑéÖ¤£®
£¨2£©Õë¶ÔÉÏÊö¸÷ʽ·´Ó³µÄ¹æÂÉ£¬Ð´³öÓÃn£¨nΪ×ÔÈ»Êý£¬ÇÒn¡Ý1£©±íʾµÄµÈʽ£¬²»ÐèÒªÖ¤Ã÷£®
·ÖÎö£º£¨1£©°´ÕÕËù¸øµÈʽµÄÑéÖ¤¹ý³ÌµÃµ½
1
4
(
1
5
-
1
6
)
=
1
4¡Á5¡Á6
=
5
4¡Á52¡Á6
=
1
5
5
24
£»
£¨2£©¸ù¾ÝËù¸øµÈʽ¿ÉµÃµ½µÚn¸öµÈʽΪ
1
n
(
1
n+1
-
1
n+2
)
=
1
n+1
n+1
n(n+2)
£¨n¡Ý1µÄÕûÊý£©£¬ÑéÖ¤¹ý³ÌÓ루1£©Ò»Ñù£®
½â´ð£º½â£º£¨1£©
1
4
(
1
5
-
1
6
)
=
1
5
5
24
£®

ÑéÖ¤£º
1
4
(
1
5
-
1
6
)
=
1
4¡Á5¡Á6
=
5
4¡Á52¡Á6
=
1
5
5
24
£»

£¨2£©
1
n
(
1
n+1
-
1
n+2
)
=
1
n+1
n+1
n(n+2)
£¨n¡Ý1µÄÕûÊý£©£®
µãÆÀ£º±¾Ì⿼²éÁ˶þ´Î¸ùʽµÄÐÔÖÊÓ뻯¼ò£º
a2
=|a|£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

̽Ë÷¹æÂÉ
¹Û²ìÏÂÁи÷ʽ¼°ÑéÖ¤¹ý³Ì£ºn=2ʱÓÐʽ¢Ù£º2¡Á
2
3
=
2+
2
3
n=3ʱÓÐʽ¢Ú£º3¡Á
3
8
=
3+
3
8

ʽ¢ÙÑéÖ¤£º2¡Á
2
3
=
23
3
=
(23-2)+2
22-1
=
2(22-1)+2
22-1
=
2+
2
3

ʽ¢ÚÑéÖ¤£º3¡Á
3
8
=
33
8
=
(33-3)+3
32-1
=
3(32-1)+3
32-1
=
3+
3
8

£¨1£©Õë¶ÔÉÏÊöʽ¢Ù¡¢Ê½¢ÚµÄ¹æÂÉ£¬Çëд³ön=4ʱµÄʽ×Ó£»
£¨2£©Çëд³öÂú×ãÉÏÊö¹æÂɵÄÓÃn£¨nΪÈÎÒâ×ÔÈ»Êý£¬ÇÒn¡Ý2£©±íʾµÄµÈʽ£¬²¢¼ÓÒÔÑéÖ¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¹Û²ìÏÂÁи÷ʽ¼°ÑéÖ¤¹ý³Ì£º
1
2
(
1
3
-
1
4
)
=
1
3
3
8
ÑéÖ¤£º
1
2
(
1
3
-
1
4
)
=
1
2¡Á3¡Á4
=
3
2¡Á32¡Á4
=
1
3
3
8
£»
1
3
(
1
4
-
1
5
)
=
1
4
4
15
ÑéÖ¤£º
1
3
(
1
4
-
1
5
)
=
1
3¡Á4¡Á5
=
4
3¡Á42¡Á5
=
1
4
4
15
£»
£¨1£©°´ÕÕÉÏÊöÁ½¸öµÈʽ¼°ÆäÑéÖ¤¹ý³ÌµÄ»ù±¾Ë¼Â·£¬²ÂÏë
1
4
(
1
5
-
1
6
)
µÄ±äÐνá¹û²¢½øÐÐÑéÖ¤£»
£¨2£©Õë¶ÔÉÏÊö¸÷ʽ·´Ó³µÄ¹æÂÉ£¬Ð´³öÓÃn£¨nΪ´óÓÚµÈÓÚ2µÄÕûÊý£©±íʾµÄµÈʽ£¬²¢½øÐÐÑéÖ¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¹Û²ìÏÂÁи÷ʽ¼°ÑéÖ¤¹ý³Ì£º
1
2
-
1
3
=
1
2
2
3
£¬ÑéÖ¤
1
2
-
1
3
=
1
2¡Á3
=
2
22¡Á3
=
1
2
2
3
£»
1
2
(
1
3
-
1
4
)
=
1
3
3
8
£¬ÑéÖ¤
1
2
(
1
3
-
1
4
)
=
1
2¡Á3¡Á4
=
3
2¡Á32¡Á4
=
1
3
3
8
1
3
(
1
4
-
1
5
)
=
1
4
4
15
£¬ÑéÖ¤
1
3
(
1
4
-
1
5
)
=
1
3¡Á4¡Á5
=
4
3¡Á42¡Á5
=
1
4
4
15

£¨1£©°´ÕÕÉÏÊöÈý¸öµÈʽ¼°ÆäÑéÖ¤¹ý³ÌÖеĻù±¾Ë¼Ï룬²ÂÏë
1
4
(
1
5
-
1
6
)
µÄ±äÐνá¹û²¢½øÐÐÑéÖ¤£®
£¨2£©Õë¶ÔÉÏÊö¸÷ʽ·´Ó³µÄ¹æÂÉ£¬Ð´³öÓÃn£¨nΪÈÎÒâµÄ×ÔÈ»Êý£¬ÇÒn¡Ý2£©±íʾµÄµÈʽ£¬²¢¸ø³öÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨1£©ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º(x+2-
5
x-2
)¡Â
x-3
x-2
£¬ÆäÖÐx=
5
-3
£»
£¨2£©Èôa=1-
2
£¬ÏÈ»¯¼òÔÙÇó
a2-1
a2+a
+
a2-2a+1
a2-a
掙术
£¨3£©ÒÑÖªa=
2
+1£¬b=
2
-1
£¬Çóa2-a2005b2006+b2µÄÖµ£»
£¨4£©ÒÑÖª£ºÊµÊýa£¬bÔÚÊýÖáÉϵÄλÖÃÈçͼËùʾ£¬
¾«Ó¢¼Ò½ÌÍø
»¯¼ò£º
(a+1)2
+2
(b-1)2
-|a-b|£»
£¨5£©¹Û²ìÏÂÁи÷ʽ¼°ÑéÖ¤¹ý³Ì£º
N=2ʱÓÐʽ¢Ù£º2¡Á
2
3
=
2+
2
3

N=3ʱÓÐʽ¢Ú£º3¡Á
3
8
=
3+
3
8

ʽ¢ÙÑéÖ¤£º2¡Á
2
3
=
23
3
=
(23-2)+2
22-1
=
2(22-1)+2
22-1
=
2+
2
3

ʽ¢ÚÑéÖ¤£º3¡Á
3
8
=
33
8
=
(33-3)+3
32-1
=
3(32-1)+3
32-1
=
3+
3
8

¢ÙÕë¶ÔÉÏÊöʽ¢Ù¡¢Ê½¢ÚµÄ¹æÂÉ£¬Çëд³ön=4ʱ±ä»¯µÄʽ×Ó£»
¢ÚÇëд³öÂú×ãÉÏÊö¹æÂɵÄÓÃn£¨nΪÈÎÒâ×ÔÈ»Êý£¬ÇÒn¡Ý2£©±íʾµÄµÈʽ£¬²¢¼ÓÒÔÑéÖ¤£®
£¨6£©ÒÑÖª¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìx2+£¨2m-1£©+m2=0ÓÐÁ½¸öʵÊý¸ùx1ºÍx2£®    ¢ÙÇóʵÊýmµÄÈ¡Öµ·¶Î§£»¢Úµ±x12-x22=0ʱ£¬ÇómµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸