精英家教网 > 初中数学 > 题目详情
如图,点C在以AB为直径的半圆O上,以点A为旋转中心,以∠β(0°<β<90°)为旋转角度将B旋转到点D,过点D作DE⊥AB于点E,交AC于点F,过点C作圆O的切线交DE于点G。

(1)求证:∠GCA=∠OCB;
(2)设∠ABC=m°,求∠DFC的值;
(3)当G为DF的中点时,请探究∠β与∠ABC的关系,并说明理由。
(1)证明见解析;(2)m°;(3)∠β=180°-2∠ABC.理由见解析.

试题分析:(1)由AB为⊙O的直角,根据圆周角定理得到∠ACB=90°,即∠1+∠3=90°,再根据切线的性质得OC⊥CG,则∠3+∠GCA=90°,然后利用等量代换即可得到∠1=∠GCA;
(2)由DE⊥AB得到∠AEF=90°,再根据等角的余角相等可得到∴∠AFE=∠ABC=m°,然后利用对顶角相等有∠DFC=∠AFE=m°;
(3)由∠GCA=∠1,∠DFC=∠ABC易得∠GCF=∠GFC,根据等腰三角形的判定得到GF=GC,由GD=GF得到GD=GC,则∠2=∠4,利用三角形内角和得∠2+∠GCF=×180°=90°,即∠DCF=90°,而∠ACB=90°,于是得到点B、C、D共线,然后根据旋转的性质得到△ABC以AB为腰的等腰三角形,且顶角∠BAC=β,则根据三角形内角和定理易得β=180°-2∠ABC.
试题解析:(1)证明:如图:

∵AB为⊙O的直角,
∴∠ACB=90°,即∠1+∠3=90°,
∵GC为⊙O的切线,
∴OC⊥CG,
∴∠OCG=90°,即∠3+∠GCA=90°,
∴∠1=∠GCA,
即∠GCA=∠OCB;
(2)∵∠ACB=90°,
∴∠ABC+∠BAC=90°,
∵DE⊥AB,
∴∠AEF=90°,
∴∠AFE+∠EAF=90°,
∴∠AFE=∠ABC=m°,
∴∠DFC=∠AFE=m°;
(3)∠β=180°-2∠ABC.理由如下:
∵∠GCA=∠1,∠DFC=∠ABC,
而∠1=∠ABC,
∴∠GCF=∠GFC,
∴GF=GC,
∵G为DF的中点,
∴GD=GF,
∴GD=GC,
∴∠2=∠4,
∴∠2+∠GCF= ×180°=90°,即∠DCF=90°,
而∠ACB=90°,
∴点B、C、D共线,
∵以点A为旋转中心,以∠β(0°<β<90°)为旋转角度将B旋转到点D,
∴AD=AB,∠BAD=β,
∴∠ABD=∠ADB,
∴β+2∠ABC=180°,
即β=180°-2∠ABC.
考点: 圆的综合题.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.

(1)求证:CD为⊙O的切线;
(2)若CD=2AD,⊙O的直径为10,求线段AC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC是⊙O的内接三角形,⊙O的直径BD交AC于点E,AF⊥BD与点F,延长AF交BC于点G.求证:AB2=BG·BC

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=26,CD=24,那么sin∠OCE=      

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

圆锥的底面半径为5cm,母线长为12cm,其侧面积为     cm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,点A、B、C、D是⊙O上的点,CD⊥AB于E,若∠ADC=50°,则∠BCD=(   )

A.50°             B.30°            C.40°       D.25°

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,AB是⊙O的弦,OC是⊙O的半径,OC⊥AB于点D,若AB=8,CD=2,则⊙O的半径等于(  )
A.5B.6C.8D.10

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在中,.⊙O截的三条边所得的弦长相等,则的度数为( )
 
A. B. C. D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在半径为3的圆中,150°的圆心角所对的弧长是(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案