精英家教网 > 初中数学 > 题目详情
如果一个矩形对折后和原矩形相似,则对折后矩形长边与短边的比为(  )
A.4:1B.2:1C.1.5:1D.
2
:1
根据条件可知:矩形AEFB矩形ABCD.
AE
AB
=
AB
AD

设AD=x,AB=y,则AE=
1
2
x.则
1
2
x
y
=
y
x
,即:
1
2
x2=y2
x2
y2
=2.
∴x:y=
2
:1.即原矩形长与宽的比为
2
:1.
∵矩形AEFB矩形ABCD,
∴对折后矩形长边与短边的比为
2
:1.
故选D.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

(如图1),点P将线段AB分成一条较小线段AP和一条较大线段BP,如果,那么称点P为线段AB的黄金分割点,设=k,则k就是黄金比,并且k≈0.618.
 
(1)以图1中的AP为底,BP为腰得到等腰△APB(如图2),等腰△APB即为黄金三角形,黄金三角形的定义为:满足≈0.618的等腰三角形是黄金三角形;类似地,请你给出黄金矩形的定义:  
(2)如图1,设AB=1,请你说明为什么k约为0.618;
(3)由线段的黄金分割点联想到图形的“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成面积为S1和面积为S2的两部分(设S1<S2),如果,那么称直线l为该矩形的黄金分割线.(如图3),点P是线段AB的黄金分割点,那么直线CP是△ABC的黄金分割线吗?请说明理由;
(4)图3中的△ABC的黄金分割线有几条?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,等腰梯形ABCD中,AD∥BC,AD=AB=CD=2,∠C=60°,M是BC的中点.
(1)求证:△MDC是等边三角形;
(2)将△MDC绕点M旋转,当MD(即MD′)与AB交于一点E,MC(即MC′)同时与AD交于一点F时,点E,F和点A构成△AEF.试探究△AEF的周长是否存在最小值?如果不存在,请说明理由;如果存在,请计算出△AEF周长的最小值.
 

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,两个梯形相似:
(1)求α的度数;(3)求x和y的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知矩形ABCD中,ABEF是正方形,且矩形CDFE与矩形ABCD相似,求矩形ABCD的宽与长的比.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列关于相似的说法:①所有的等腰直角三角形一定相似;②所有的菱形一定相似;③所有的全等三角形一定相似;④所有的位似图形一定相似;⑤所有的有一个角为60°的等腰梯形一定相似.
其中说法正确的有(  )
A.5个B.4个C.3个D.2个

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在△ABC中,点D是AB边的中点,点E是AC边的中点,连接DE,若BC=4,则DE=   

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列正多边形中,内角和等于外角和的是(   )
A.正三边形B.正四边形C.正五边形D.正六边形

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若两圆外切,其中一圆的半径为10,另一个圆的半径为7,则两圆的圆心距是____________.

查看答案和解析>>

同步练习册答案