精英家教网 > 初中数学 > 题目详情
如图,有下列六个论断:①AC=CB,②∠A=∠B,③∠ACE=∠BCD,④CE=CD⑤∠E=∠D,⑥BE=AD.请以其中三个论断作为条件,编拟一个由三个条件能推出一个结论成立的真命题,并证明.
考点:全等三角形的判定与性质,命题与定理
专题:开放型
分析:此题是一道开放型题目,答案不唯一,如①②③推出④等.
解答:已知:①AC=CB,⑤∠E=∠D,②∠A=∠B,
求证:⑥BE=AD,
证明:在△ACD和△BCE中
∠D=∠E
∠A=∠B
AC=BC

∴△ACD≌△BCE(AAS),
∴BE=AD.
点评:本题考查了全等三角形的性质和判定的应用,注意:全等三角形的对应边相等,对应角相等,全等三角形的判定定理有SAS,ASA,AAS,SSS.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知在△ABC中,∠ABC=90°,AB=3cm,BC=4cm.动点Q从点A出发沿AC向终点C匀速运动,速度2cm/s;同时,点P从点B出发沿BA向终点A匀速运动,速度1cm/s;
(1)当t为何值时,△APQ与△ABC相似?
(2)当t为何值时,△APQ为等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等边△ABC中,D,E分别为AB,BC边上的点,且BD=CE,AE与CD交于点F,AG⊥CD于点G.
(1)求∠AFG的度数;
(2)求
FG
AF
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC中,点A的坐标为(0,-2),点C的坐标为(2,1),点B的坐标为(3,-1),要使△ACD与△ACB全等,那么符合条件的点D有
 
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图①,在△ABC中,分别以AB,AC为边作等边△ABD和等边△ACE,猜想CD与BE有什么样的数量关系,直接写出结论,不需证明;
(2)如图②,在(1)的条件下,若△ABC中,AB=AC,连结DE分别交AB、AC于点M、N,猜想DM与EN有什么样的数量关系,证明你的结论;
(3)如图③,在(1)的条件下,若△ABC中,∠ACB=90°,∠BAC=30°,连结DE分别交AB、AC于点M、N,则有DM=EM,请证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,已知点P(3,4),Q(4,3)分别在x轴、y轴上,求点M、N,使P、Q、M、N为顶点的四边形的周长最小.
(1)求M、N的坐标;
(2)求四边形的周长和面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知,AD为ABC的角平分线,CE⊥AD于点O,CE交AB于E,EF∥BC,求证:∠DEC=∠FEC.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,已知A(-1,-1)、B(2,3),若要在x轴上找一点P,使AP+BP最短,则点P的坐标为(  )
A、(0,0)
B、(-
5
2
,0)
C、(-1,0)
D、(-
1
4
,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

某中学为了解学生上学方式,现随机抽取部分学生进行调查,将结果绘成如图所示的条形图,由此可估计该校2000名学生有
 
名学生是骑车上学的.

查看答案和解析>>

同步练习册答案