精英家教网 > 初中数学 > 题目详情
18.如图,在?ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中①∠DCF=$\frac{1}{2}$∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.一定成立的是(  )
A.①②B.①③④C.①②③D.①②④

分析 如图延长EF交CD的延长线于H.作EN∥BC交CD于N,FK∥AB交BC于K.利用平行四边形的性质,全等三角形的判定和性质一一判断即可解决问题.

解答 解:如图延长EF交CD的延长线于H.作EN∥BC交CD于N,FK∥AB交BC于K.
∵四边形ABCD是平行四边形,
∴AB∥CH,
∴∠A=∠FDH,
在△AFE和△DFH中,$\left\{\begin{array}{l}{∠A=∠FDH}&{\;}\\{∠AFE=∠HFD}&{\;}\\{AF=DF}&{\;}\end{array}\right.$,
∴△AFE≌△DFH(AAS),
∴EF=FH,
∵CE⊥AB,AB∥CH,
∴CE⊥CD,
∴∠ECH=90°,
∴CF=EF=FH,故②正确,
∵DF=CD=AF,
∴∠DFC=∠DCF=∠FCB=$\frac{1}{2}$∠BCD;故①正确,
易证四边形DFKC是菱形,∴∠DFC=∠KFC,
∵AE∥EK,
∴∠AEF=∠EFK,
∵FE=FC,FK⊥EC,
∴∠EFK=∠KFC,
∴∠DFE=3∠AEF,故④正确,
∵四边形EBCN是平行四边形,
∴S△BEC=S△ENC
∵S△EHC=2S△EFC,S△EHC>S△ENC
∴S△BEC<2S△CEF,故③错误,
故正确的有①②④.
故选:D.

点评 本题考查平行四边形的性质、全等三角形的判定和性质、直角三角形斜边的中线的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

8.如图,动点A在曲线y=$\frac{2}{x}$(x>0)上,AB⊥x轴于点B,AC⊥y轴于点C,延长CA至点D,使AD=AB,延长BA至点E,使AE=AC,直线DE分别交x轴,y轴于点M,N,当NE:DM=1:2时,图中的阴影部分的面积等于$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,AB是⊙O的直径,点C和点D是⊙O上两点,连接AC、CD、BD,若CA=CD,∠ACD=80°,则∠CAB=40°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,∠DAB=∠EAC,AB=AE,AD=AC.求证:DE=BC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连结BF.
(1)求证:①△EAF≌△EDC;
②D是BC的中点;
(2)若AB=AC,求证:四边形AFBD是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.-|-125|的立方根是(  )
A.-$\frac{25}{3}$B.$\frac{25}{3}$C.5D.-5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.计算:|1-$\sqrt{3}$|+${(2017-50\sqrt{2})}^{0}$-${(-\frac{1}{3})}^{2}$-3tan30°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,抛物线y=ax2+bx+3与x轴交于A(-1,0)、B(3,0)两点,与y轴交于C点,抛物线的对称轴l与x轴交于M点.
(1)求抛物线的函数解析式;
(2)设点P是直线l上的一个动点,当PA+PC的值最小时,求PA+PC长;
(3)在直线l上是否存在点Q,使以M、O、Q为顶点的三角形与△AOC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知:如图,C、D是直线AB上两点,∠1+∠2=180°,DE平分∠CDF,EF∥AB.
(1)求证:CE∥DF;
(2)若∠DCE=126°,求∠DEF的度数.

查看答案和解析>>

同步练习册答案