精英家教网 > 初中数学 > 题目详情
10.若a+b=8,ab=15,求a2+ab+b2的值.

分析 根据完全平方公式,即可解答.

解答 解:∵(a+b)2=a2+2ab+b2
∴a2+b2=(a+b)2-2ab,
∴a2+ab+b2
=(a+b)2-2ab+ab
=(a+b)2-ab
=82-15
=64-15
=49.

点评 本题考查了完全平方公式,解决本题的关键是熟记完全平方公式.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.如图①,在平面直角坐标系中,OA=6,以OA为边长作等边三角形ABC,使得BC∥OA,且点B、C落在过原点且开口向下的抛物线上.
(1)求这条抛物线的解析式;
(2)在图①中,假设一动点P从点B出发,沿折线BAC的方向以每秒2个单位的速度运动,同时另一动点Q从O点出发,沿x轴的负半轴方向以每秒1个单位的速度运动,当点P运动到A点时,P、Q都同时停止运动,在P、Q的运动过程中,是否存在时间t,使得PQ⊥AB,若存在,求出t的值,若不存在,请说明理由;
(3)在BC边上取两点E、F,使BE=EF=1个单位,试在AB边上找一点G,在抛物线的对称轴上找一点H,使得四边形EGHF的周长最小,并求出周长的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.(x2-mx+3)(3x-2)的积中不含x的二次项,则m的值是-$\frac{2}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.菱形ABCD中,两条对角线AC,BD相交于点O,点E和点F分别是BC和CD上一动点,且∠EOF+∠BCD=180°,连接EF.

(1)如图1,当∠ABC=90°时,若AC=4$\sqrt{2}$,BE=$\frac{3}{2}$,求线段EF的长;
(2)如图2,当∠ABC=60°时,求证:CE+CF=$\frac{1}{2}$AB;
(3)如图3,当∠ABC=90°时,将∠EOF的顶点移到AO上任意一点O′处,∠EO′F绕点O′旋转,仍满足∠EO′F+∠BCD=180°,O′E交BC的延长线一点E,射线O′F交CD的延长线上一点F,连接EF.探究在整个运动变化过程中,线段CE、CF,O′C之间满足的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知,点D位直线BC上一动点(点D不与点B,C重合),∠BAC=90°,AB=AC,∠ABC=∠ACB=45°,∠DAE=90°,AD=AE,连接CE.
(1)如图1,当点D在线段BC上时,求证:
①BD⊥CE;
②CE=BC-CD.
知识迁移,探究发现
(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CE,BC,CD三条线段之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图2,在平面直角坐标系xOy中,已知OP平分∠yOx.点P(2,2),点A在x轴正半轴上,联结PA,过点P作PB⊥PA交轴正半轴于点B.
(1)如图1,当PA⊥x轴时,求点A的坐标;
(2)如图2,当PA不垂直于x轴时,联结AB,试判断△PAB的形状,并说明理由;
(3)如图2,当PA不垂直于x轴时,请直接写出四边形APBO的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.从1,3,-4这三个数中,随机抽取两个数相乘,积是正数的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图是某市某中学八年级(1)班学生参加音乐、美术、体育课外兴趣小组人数的部分条形统计图和扇形统计图,则下列说法错误的是(  )
A.八年级(1)班参加这三个课外兴趣小组的学生总人数为30人
B.在扇形统计图中,八年级(1)班参加音乐兴趣小组的学生人数所占的圆心角度数为82°
C.八年级(1)班参加音乐兴趣小组的学生人数为6人
D.若该校八年级参加这三个兴趣小组的学生共有200人,那么估计全年级参加美术兴趣小组的学生约有60人

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.计算:
(1)(-$\frac{1}{4}$)-1+(-2)2×50                
(2)(27a3+15a2+6a)÷(3a)+5a.

查看答案和解析>>

同步练习册答案