精英家教网 > 初中数学 > 题目详情
20.一个等腰三角形的三边长都是整数,且周长为13,求这个等腰三角形的三边长.

分析 设等腰三角形的腰是x,底边是y,得出方程2x+y=13,求出方程的正整数解,再看看是否符合符合三角形三边关系定理即可.

解答 解:设等腰三角形的腰是x,底边是y,则2x+y=13,
y=13-2x>0,x>0,
0<x<6.5,
∵三边长都是整数,
∴当x=1时,三边是1,1,11,不符合三角形三边关系定理;
当x=2时,三边是2,2,9,不符合三角形三边关系定理;
当x=3时,三边是3,3,7,不符合三角形三边关系定理;
当x=4时,三边是4,4,5,符合三角形三边关系定理;
当x=5时,三边是5,5,3,符合三角形三边关系定理;
当x=6时,三边是6,6,1,符合三角形三边关系定理;
即这个三角形的三边长是4,4,5或5,5,3或6,6,1.

点评 本题考查了等腰三角形的性质及三角形三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.计算:(-$\frac{1}{2}$)-2+2cos60°-20170

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.某数学兴趣小组在学习了《锐角三角函数》以后,开展测量物体高度的实践活动,测量一建筑物CD的高度,他们站在B处仰望楼顶C,测得仰角为30°,再往建筑物方向走20m,到达点F处测得楼顶C的仰角为45°(BFD在同一直线上).已知观测员的眼睛与地面距离为1.5m(即AB=1.5m),求这栋建筑物CD的高度.(参考数据:$\sqrt{3}$≈1.732,$\sqrt{2}$≈1.414.结果保留整数)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如何在一个三角形内部画一个内接正方形?小聪对其进行如下探索:
第1步:如图1,在△ABC内部先作一个正方形DEFG,使得EF落在BC边上,D落在AB边上,他认为作这样的正方形比较容易实现,但是该正方形顶点G并没有落在AC边上;
第2步:他认为只要将正方形DEFG逐渐放大,就会实现点G落在AC边上的目的,于是他作了射线BG,交AC于点N;
第3步:他认为只要点N确定了,那么正方形NQPM就很容易得到了,于是就实现了在三角形内部画一个内接正方形的目的了.
借鉴小聪的探索过程,请你利用图2和图3,在扇形AOB内部作两个不同类型的内接正方形,并指出上述画图中主要利用了什么样的几何变换?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.在△ABC中,AB=AC=10,∠A=36°,BD平分∠ABC,求AD、DC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.求1+2+22+23+…+22017的值,可令S=1+2+22+23+…+22017,则2S=2+22+23+…+22018,因此2S-S=22018-1,仿照以上推理,计算出1+5+52+53+…+52017的值为$\frac{{5}^{2018}-1}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.均匀地向一个瓶子注水,最后把瓶子注满,在注水过程中,水面高度h随时间变化规律如图1,则这个瓶子的形状是如图2中的B.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图放置的正方形ABCD,正方形DCC1D1,正方形D1C1C2D2,…都是边长为$\sqrt{3}$的正方形,点A在y轴上,点B,C,C1,C2,…,都在直线y=$\frac{\sqrt{3}}{3}$x上,则D的坐标是($\sqrt{3}$,1+$\frac{4\sqrt{3}}{3}$),Dn的坐标是($\sqrt{3}$(n+1),$\frac{3(n+1)+4\sqrt{3}}{3}$).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合),以AD为边在AD的右侧作正方形ADEF,连接CF.
(1)观察猜想:如图(1),当点D在线段BC上时,
①BC与CF的位置关系是:BC⊥CF;
②BC、CD、CF之间的数量关系为:BC=CF+CD(将结论直接写在横线上)
(2)数学思考:如图(2),当点D在线段CB的延长线上时,上述①、②中的结论是否仍然成立?若成立,请给予证明,若不成立,请你写出正确结论再给予证明.

查看答案和解析>>

同步练习册答案