精英家教网 > 初中数学 > 题目详情
17.下列方程中,解为x=-2的方程是(  )
A.2x+5=1-xB.3-2(x-1)=7-xC.x-2=-2-xD.1-$\frac{1}{4}$x=$\frac{1}{4}$x

分析 将x=-2代入各选项中,若等式左右两边相等,则是该方程的解.

解答 解:将x=-2代入3-2(x-1)=7-x,
∴左边=3-2×(-2-1)=3+6=9,
右边=7-(-2)=9
左边=右边,
故选(B)

点评 本题考查方程的解,属于基础题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.化简:(-2a2b33+3a4b3×(-ab32

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.计算:
(1)a$\sqrt{8a}$-2a2$\sqrt{\frac{1}{8a}}$+3$\sqrt{2{a}^{3}}$              
(2)2cos245°-sin30°•tan245°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.(1)解方程(y2-2y+1)(y2+2y-1)=y2(y+2)(y-2);
(2)已知x+y=7,xy=12,求x2+y2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.计算:
(1)(2y+1)2-(y-1)(y+5);
(2)(ab23÷(-ab)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.解下列方程:
(1)4(x-2)=3(1+3x)-12
(2)$\frac{10x}{7}$$-\frac{17-20x}{3}$=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.按要求完成下列题目.
(1)求:$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{n(n+1)}$的值.
对于这个问题,可能有的同学接触过,一般方法是考虑其中的一般项,注意到上面和式的每一项可以写成$\frac{1}{n(n+1)}$的形式,而$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,这样就把$\frac{1}{n(n+1)}$一项(分)裂成了两项.
试着把上面和式的每一项都裂成两项,注意观察其中的规律,求出上面的和,并直接写出$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{2016×2017}$的值.
(2)若$\frac{1}{n(n+1)(n+2)}$=$\frac{A}{n(n+1)}$+$\frac{B}{(n+1)(n+2)}$
①求:A、B的值:
②求:$\frac{1}{1×2×3}$+$\frac{1}{2×3×4}$+…+$\frac{1}{n(n+1)(n+2)}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图所示,四边形ABCD是圆O的内接四边形,AB的延长线与DC的延长线交于点E,且∠D=∠E.
(1)求证:∠ADC=∠CBE;
(2)求证:CB=CE;
(3)设AD不是圆O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M、N分别为AC、CD的中点,连接BM、MN、BN.求证:BM=MN.

查看答案和解析>>

同步练习册答案