精英家教网 > 初中数学 > 题目详情

【题目】已知抛物线

(1)求这条抛物线的对称轴;

(2)若该抛物线的顶点在x轴上,求其解析式;

(3)设点在抛物线上,若,求m的取值范围.

【答案】1;(2;(3)当a0时,;当a0时,

【解析】

1)将二次函数化为顶点式,即可得到对称轴;

2)根据(1)中的顶点式,得到顶点坐标,令顶点纵坐标等于0,解一元二次方程,即可得到的值,进而得到其解析式;

3)根据抛物线的对称性求得点Q关于对称轴的对称点,再结合二次函数的图象与性质,即可得到的取值范围.

1)∵

∴其对称轴为:

2)由(1)知抛物线的顶点坐标为:

∵抛物线顶点在轴上,

解得:

时,其解析式为:

时,其解析式为:

综上,二次函数解析式为:

3)由(1)知,抛物线的对称轴为

关于的对称点为

a0时,若

-1m3

a0时,若

m-1m3.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,点EFGH分别是边ABBCCDDA的中点,连接EFFGGHHE.若EH=2EF,则下列结论正确的是

A. ABEF B. AB=2EF C. ABEF D. ABEF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线经过三点.

1)求该抛物线的解析式;

2)经过点B的直线交y轴于点D,交线段于点E,若

①求直线的解析式;

②已知点Q在该抛物线的对称轴l上,且纵坐标为1,点P是该抛物线上位于第一象限的动点,且在l右侧.点R是直线上的动点,若是以点Q为直角顶点的等腰直角三角形,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明和小丽为更好的掌握一元二次方程根的判断情况,两人玩一个游戏:

在一个不透明口袋中装有分别标有 -1012的四个小球,除了数字不同之外,这些小球完全一样.

1)从中任取1球,此小球是非负数的概率是__________

2)小明从四球中任取两球,数字和记为m,若一元二次方程有实根,小明赢,无实根小丽赢.这个游戏公平吗?请你用树状图或列举法分别求出小明、小丽赢的概率,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们知道,两点之间线段最短,因此,连接两点间线段的长度叫做两点间的距离;同理,连接直线外一点与直线上各点的所有线段中,垂线段最短,因此,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.类似地,连接曲线外一点与曲线上各点的所有线段中,最短线段的长度,叫做点到曲线的距离.依此定义,如图,在平面直角坐标系中,点到以原点为圆心,以1为半径的圆的距离为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】近几年,国内快递业务快速发展,由于其便捷、高效,人们越来越多地通过快递公司代办点来代寄包裹.某快递公司某地区一代办点对60天中每天代寄的包裹数与天数的数据(每天代寄包裹数、天数均为整数)统计如下:

1)求该数据中每天代寄包裹数在范围内的天数;

2)若该代办点对顾客代寄包裹的收费标准为:重量小于或等于1千克的包裹收费8元;重量超1千克的包裹,在收费8元的基础上,每超过1千克(不足1千克的按1千克计算)需再收取2元.

①某顾客到该代办点寄重量为1.6千克的包裹,求该顾客应付多少元费用?

②这60天中,该代办点为顾客代寄的包表中有一部分重量超过2千克,且不超过5千克.现从中随机抽取40件包裹的重量数据作为样本,统计如下:

重量G(单位:千克)

件数(单位:件)

15

10

15

求这40件包裹收取费用的平均数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=﹣x2x+x轴交于点A,B(点A在点B的左边),与y轴交于点C,点D是该抛物线的顶点.

(1)如图1,连接CD,求线段CD的长;

(2)如图2,点P是直线AC上方抛物线上一点,PFx轴于点F,PF与线段AC交于点E;将线段OB沿x轴左右平移,线段OB的对应线段是O1B1,当PE+EC的值最大时,求四边形PO1B1C周长的最小值,并求出对应的点O1的坐标;

(3)如图3,点H是线段AB的中点,连接CH,将△OBC沿直线CH翻折至△O2B2C的位置,再将△O2B2C绕点B2旋转一周在旋转过程中,点O2,C的对应点分别是点O3,C1,直线O3C1分别与直线AC,x轴交于点M,N.那么,在△O2B2C的整个旋转过程中,是否存在恰当的位置,使△AMN是以MN为腰的等腰三角形?若存在,请直接写出所有符合条件的线段O2M的长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人.

1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?

2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2019年某中学举行的冬季阳径运动会上,参加男子跳高的15名运动员的成绩如表所示:

成绩(m

1.80

1.50

1.60

1.65

1.70

1.75

人数

1

2

4

3

3

2

这些运动员跳高成绩的中位数和众数分别是(

A.B.

C.D.

查看答案和解析>>

同步练习册答案