精英家教网 > 初中数学 > 题目详情
△ABC和△EFG是两块完全重合的等边三角形纸片(如图①所示),O是AC(或EF)的中点,△ABC不动,将△EFG绕O点顺时针转α(0°<α°<120°).
(1)试分别说明α是多少度时,点F在△ABC外部、BC上、内部(不证明)?
(2)当点F不在BC上时,在图②、图③两种情况下(设EF或延长线与BC交于P,EG与CA或延长线交于Q),分别写出OP与OQ的数量关系,并从图②、③中选一种情况给予证明.
精英家教网
分析:(1)按照α=60°,0<α<60°,60°<α<120°分类说明;
(2)利用ASA,寻找证明三角形全等的条件.
解答:解:(1)当0°<α<60°,点F在△ABC的外部,
当α=60°,点F在BC的中点,
当60°<α<120°,点F在△ABC的内部;

(2)两种情况下均有OP=OQ;
证明:如图③,∠E=∠C=60°,OE=OC=
1
2
AC,∠EOQ=∠COP,
∴△EOQ≌△COP,
∴OP=OQ.
点评:本题考查了旋转的性质、旋转知识在证明三角形全等中的运用等知识.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图①,有两个形状相同但大小不同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜边上的中点,如图②,若整个△EFG从图①的位置出发,以1cm/s的速度沿射线AB方向平移,在△EFG平移的同时,点p从△EFG的顶点G出发,以1cm/s的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,△EFG也随之停止平移,设运动时间为x(s),FG的延长线交AC于H,(不考虑点P与G、F重合的情况)
(1)当x为何值时,OP∥AC?
(2)你能不能用含x的式子来表示四边形OAHP面积呢?若能,请表示;若不能,请说理由.
(3)是否存在某一时刻,使四边形OAHP面积与△ABC面积的比为13:24?若存在,求出x的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

△ABC和△EFG是两块完全重合的等边三角形纸片(如图①所示),O是AC(或EF)的中点,△ABC不动,将△EFG绕O点顺时针转α(0°<α°<120°).
(1)试分别说明α是多少度时,点F在△ABC外部、BC上、内部(不证明)?
(2)当点F不在BC上时,在图②、图③两种情况下(设EF或延长线与BC交于P,EG与CA或延长线交于Q),分别写出OP与OQ的数量关系,并从图②、③中选一种情况给予证明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

△ABC和△EFG是两块完全重合的等边三角形纸片(如图①所示),O是AC(或EF)的中点,△ABC不动,将△EFG绕O点顺时针转α(0°<α°<120°).
(1)试分别说明α是多少度时,点F在△ABC外部、BC上、内部(不证明)?
(2)当点F不在BC上时,在图②、图③两种情况下(设EF或延长线与BC交于P,EG与CA或延长线交于Q),分别写出OP与OQ的数量关系,并从图②、③中选一种情况给予证明.

精英家教网

查看答案和解析>>

科目:初中数学 来源:2009-2010学年江西省吉安市九年级(上)期中数学试卷(解析版) 题型:解答题

△ABC和△EFG是两块完全重合的等边三角形纸片(如图①所示),O是AC(或EF)的中点,△ABC不动,将△EFG绕O点顺时针转α(0°<α°<120°).
(1)试分别说明α是多少度时,点F在△ABC外部、BC上、内部(不证明)?
(2)当点F不在BC上时,在图②、图③两种情况下(设EF或延长线与BC交于P,EG与CA或延长线交于Q),分别写出OP与OQ的数量关系,并从图②、③中选一种情况给予证明.

查看答案和解析>>

同步练习册答案