精英家教网 > 初中数学 > 题目详情
(2004•江西)已知关于x的方程x2-2(m+1)x+m2=0,
(1)当m取什么值时,原方程没有实数根;
(2)对m选取一个合适的非零整数,使原方程有两个实数根,并求这两个实数根的平方和.
【答案】分析:(1)要使原方程没有实数根,只需△<0即可,然后可以得到关于m的不等式,由此即可求出m的取值范围;
(2)根据(1)中求得的范围,在范围之外确定一个m的值,再根据根与系数的关系求得两根的平方和.
解答:解:(1)∵方程没有实数根
∴b2-4ac=[-2(m+1)]2-4m2=8m+4<0,

∴当时,原方程没有实数根;
(2)由(1)可知,时,方程有实数根,
∴当m=1时,原方程变为x2-4x+1=0,
设此时方程的两根分别为x1,x2
则x1+x2=4,x1•x2=1,
∴x12+x22=(x1+x22-2x1x2=16-2=14,
∴当m=1时,原方程有两个实数根,这两个实数根的平方和是14.
点评:此题要求学生能够用根的判别式求解字母的取值范围,熟练运用根与系数的关系求关于两个根的一些代数式的值.
练习册系列答案
相关习题

科目:初中数学 来源:2004年全国中考数学试题汇编《锐角三角函数》(01)(解析版) 题型:选择题

(2004•江西)已知α为锐角,tan(90°-α)=,则α的度数为( )
A.30°
B.45°
C.60°
D.75°

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《一元二次方程》(04)(解析版) 题型:解答题

(2004•江西)已知关于x的方程x2-2(m+1)x+m2=0,
(1)当m取什么值时,原方程没有实数根;
(2)对m选取一个合适的非零整数,使原方程有两个实数根,并求这两个实数根的平方和.

查看答案和解析>>

科目:初中数学 来源:2004年江西省中考数学试卷(解析版) 题型:解答题

(2004•江西)已知关于x的方程x2-2(m+1)x+m2=0,
(1)当m取什么值时,原方程没有实数根;
(2)对m选取一个合适的非零整数,使原方程有两个实数根,并求这两个实数根的平方和.

查看答案和解析>>

科目:初中数学 来源:2004年江西省中考数学试卷(解析版) 题型:选择题

(2004•江西)已知α为锐角,tan(90°-α)=,则α的度数为( )
A.30°
B.45°
C.60°
D.75°

查看答案和解析>>

同步练习册答案