【题目】随着经济的快速发展,环境问题越来越受到人们的关注.某校学生会为了了解垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两幅统计图.
(1)求:本次被调查的学生有多少名?补全条形统计图.
(2)估计该校1200名学生中“非常了解”与“了解”的人数和是多少.
(3)被调查的“非常了解”的学生中有2名男生,其余为女生,从中随机抽取2人在全校做垃圾分类知识交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.
【答案】(1)本次被调查的学生有50人,补全图形见解析;(2)估计该校1200名学生中“非常了解”与“了解”的人数和是408人;(3)恰好抽到一男一女的概率为.
【解析】
(1)由“了解”的人数及其所占百分比求出总人数,总人数乘以对应的百分比可求出“非常了解”、“了解很少”的人数,继而求出“不了解”的人数,从而补全图形;
(2)利用样本估计总体思想求解可得;
(3)画树状图展示所有20种等可能的结果数,再找出符合条件的结果数,然后利用概率公式求解.
(1)本次被调查的学生有由12÷24%=50(人),
则“非常了解”的人数为50×10%=5(人),
“了解很少”的人数为50×36%=18(人),
“不了解”的人数为50﹣(5+12+18)=15(人),
补全图形如下:
(2)估计该校1200名学生中“非常了解”与“了解”的人数和是1200×=408(人);
(3)画树状图为:
共有20种等可能的结果数,其中恰好抽到一男一女的有12种结果,
所以恰好抽到一男一女的概率为=.
科目:初中数学 来源: 题型:
【题目】如图,已知点A(1,0),B(0,3),将△AOB绕点O逆时针旋转90°,得到△COD,设E为AD的中点.
(1)判断AB与CD的关系并证明;
(2)求直线EC的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若凸四边形的两条对角线所夹锐角为60°,我们称这样的凸四边形为“完美四边形”.
(1)①在“平行四边形、梯形、菱形、正方形”中,一定不是“完美四边形”的有 ;
②若矩形ABCD是“完美四边形”,且AB=4,则BC= ;
(2)如图1,“完美四边形”ABCD内接于⊙O,AC与BD相交于点P,且对角线AC为直径,AP=1,PC=5,求另一条对角线BD的长;
(3)如图2,平面直角坐标系中,已知“完美四边形”ABCD的四个顶点A(﹣3,0)、C (2,0),B在第三象限,D在第一象限,AC与BD交于点O,直线BD的斜率为,且四边形ABCD的面积为15,若二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图象同时经过这四个顶点,求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A(3,1),B(1,0),PQ是直线y=x上的一条动线段且PQ=(Q在P的下方),当AP+PQ+QB取最小值时,点Q坐标为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】作图题:(保留作图痕迹,不写做法)
(1)已知:如图,四边形ABCD与四边形EFGH成中心对称,试画出它们的对称中心O。
(2)考古学家在考古过程中发现一个圆盘,但是因为历史悠久,已经有一部分缺失,如图所示.现希望复原圆盘,需要先找到圆盘的圆心,才能继续完成后续修复工作.请利用直尺(无刻度)和圆规,在图中找出圆心O.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:在平面直角坐标系中,图形G上点P(x,y)的纵坐标y与其横坐标x的差y-x称为P点的“坐标差”,而图形G上所有点的“坐标差”中的最大值称为图形G的“特征值”
(1)①点A(1,3) 的“坐标差”为 。
②抛物线y=-x2+3x+3的“特征值”为 。
(2)某二次函数y=-x2+bx+c(c≠0) 的“特征值”为1,点B(m,0)与点C分别是此二次函数的图象与x轴和y轴的交点,且点B与点C的“坐标差”相等。
①直接写出m= (用含c的式子表示)
②求此二次函数的表达式。
(3)如图,在平面直角坐标系xOy中,以M(2,3)为圆心,2为半径的圆与直线y=x相交于点D、E请直接写出⊙M的“特征值”为 。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读探索:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)
(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:
设所求矩形的两边分别是x和y,由题意得方程组:,消去y化简得:2x2﹣7x+6=0,
∵△=49﹣48>0,
∴x1=_____,x2=_______,
∴满足要求的矩形B存在.
(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.
(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,对角线,点E是线段BC上的动点,连接DE,过点D作DP⊥DE,在射线DP上取点F,使得,连接CF,则周长的最小值为___________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com