精英家教网 > 初中数学 > 题目详情
29、如图,已知点D、E为△ABC的边BC上两点.AD=AE,BD=CE,为了判断∠B与∠C的大小关系,请你填空完成下面的推理过程,并在空白括号内注明推理的依据.
解:过点A作AH⊥BC,垂足为H.
∵在△ADE中,AD=AE(已知)
AH⊥BC(所作)
∴DH=EH(等腰三角形底边上的高也是底边上的中线)
又∵BD=CE(已知)
∴BD+DH=CE+EH(等式的性质)
即:BH=
CH

又∵
AH⊥BC
(所作)
∴AH为线段
BC
的垂直平分线
∴AB=AC(线段垂直平分线上的点到线段两个端点的距离相等)
∠B=∠C
(等边对等角)
分析:首先根据等腰三角形的性质,得DH=EH,结合已知条件,根据等式的性质,得BH=CH,从而根据线段垂直平分线的性质,得AB=AC,再根据等腰三角形的性质即可证明.
解答:解:过点A作AH⊥BC,垂足为H.
∵在△ADE中,AD=AE(已知),
AH⊥BC(所作),
∴DH=EH(等腰三角形底边上的高也是底边上的中线).
又∵BD=CE(已知),
∴BD+DH=CE+EH(等式的性质),
即:BH=CH.
又∵AH⊥BC(所作),
∴AH为线段BC的垂直平分线.
∴AB=AC(线段垂直平分线上的点到线段两个端点的距离相等).
∴∠B=∠C(等边对等角).
点评:此题综合运用了等腰三角形的性质、线段垂直平分线的性质.
等腰三角形底边上的高、底边上的中线、顶角的平分线互相重合;等腰三角形的两个底角相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知点F的坐标为(0,1),过点F作一条直线与抛物线y=
14
x2
交于点A和点B,若以线段AB为直径作圆,则该圆与直线y=-1的位置关系是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知点P的坐标为(2,1),抛物线y=x2沿OP方向平移,顶点B从O点开始平移到P点结束,设顶点B的横坐标为m.
精英家教网
(1)用m的代数式表示点B的坐标;
(2)设直线x=2与抛物线交于点A,与x轴交于点F,平移过程中抛物线的对称轴交x轴于点E.
①当四边形ABEP是平行四边形时,求此时抛物线的解析式;
②探究:当m为何值时,以AB为边的正方形ABCD的顶点C落在坐标轴上?

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知点E在面积为4的平行四边形ABCD的边上运动,使△ABE的面积为1的点E共有
 
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知点A的坐标为(0,1),点B的坐标为(
3
2
,-2),点P在直线y=-x上运动,当|PA-PB|最大时点P的坐标为(  )
A、(2,-2)
B、(4,-4)
C、(
5
2
,-
5
2
D、(5,-5)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知点F的坐标为(3,0),点A、B分别是某函数图象与x轴、y轴的交点,点P是此图象上的一动点,设点P的横坐标为x,PF的长为d,且d与x之间满足关系:d=5-
3
5
x(0≤x≤5),则结论:①AF=2;②BF=5;③OA=5;④OB=3,正确结论的序号是(  )
A、①②③B、①③
C、①②④D、③④

查看答案和解析>>

同步练习册答案