精英家教网 > 初中数学 > 题目详情
14.如图1,在△ABC中,在BC边上取一点P,在AC边上取一点D,连AP、PD,如果△APD是等腰三角形且△ABP与△CDP相似,我们称△APD是AC边上的“等腰邻相似三角形”.
(1)如图2,在△ABC中AB=AC,∠B=50°,△APD是AB边上的“等腰邻相似三角形”,且AD=DP,∠PAC=∠BPD,则∠PAC的度数是30°;
(2)如图3,在△ABC中,∠A=2∠C,在AC边上至少存在一个“等腰邻相似△APD”,请画出一个AC边上的“等腰邻相似△APD”,并说明理由;
(3)如图4,在Rt△ABC中AB=AC=2,△APD是AB边上的“等腰邻相似三角形”求出AD长度的所有可能值.

分析 (1)只要证明∠A=∠PAB即可解决问题.
(2)如图3中,作∠BAC的平分线AP交BC于P,作PD∥AB交AC于D,只要证明DP=DA,即可解决问题.
(3)分三种情形讨论①如图3′中,当DA=DP时.②如图4中,当PA=PD时.③如图5中,当AP=AD时.分别求解即可解决问题.

解答 解:(1)如图2中,

∵AB=AC,DA=DP,
∴∠B=∠C,∠DAP=∠DPA,
∵∠PAC=∠BPD,
∴∠APC=∠BDP=∠DAP+∠DPA,
∵∠APC=∠B+∠BAP,
∴∠B=∠PAB=50°,
∵∠BAC=180°-50°-50°=80°,
∴∠PAC=30°
故答案为30°.

(2)如图3中,作∠BAC的平分线AP交BC于P,作PD∥AB交AC于D,

∴∠BAP=∠PAD=∠DPA,∠CPD=∠B,
∵∠CAB=2∠C,
∴∠PAD=∠C,
∴DP=DA,
∴△APD是等腰三角形且与△APB与△CDP相似.

(3)如图3′中,当DA=DP时,设∠APD=∠DAP=x,

①若∠BPD=∠CAP=90°-x,∠BDP=∠CPA=2x,
∴90°-x+2x+x=180°,
∴x=45°,
∴三角形都是等腰直角三角形,易知AD=1,
②若∠PDB=∠CAP时,设∠APD=∠DAP=x,得到∠PDB=∠CAP=2x,易知x=30°,设AD=a,则AP=$\sqrt{3}$a,
∵△BPD∽△CPA,
∴$\frac{BD}{AC}$=$\frac{PD}{PA}$,即$\frac{2-a}{2}$=$\frac{a}{\sqrt{3}}$a,解得a=$\frac{6-2\sqrt{3}}{3}$,
如图4中,当PA=PD时,易知∠PDB是钝角,∠CAP是锐角,

∴∠PDB=∠CPA,则△BPD≌△CPA,设AD=a,则BD=2-a,BP=2$\sqrt{2}$-(2-a),AC=2,
2$\sqrt{2}$-(2-a)=2,
解得a=4-2$\sqrt{2}$,
如图5中,当AP=AD时,设∠APD=∠ADP=x,则∠DAP=180°-2x,易知∠PDB为钝角,∠CAP为锐角,

∴∠PDB=∠CAP=180°-x,∠CAP=90°-∠DAP=90°-(180°-2x)=2x-90°,
在△APC中,2x-90°+180°-x+45°=180°,解得x=45°,不可能成立.
综上所述.AD的长为1或$\frac{6-2\sqrt{3}}{3}$或4-2$\sqrt{2}$.

点评 本题考查相似三角形综合题、等腰直角三角形的性质、角平分线的定义、相似三角形的判定和性质等知识,解题的关键是理解题意,学会用构建方程的思想思考问题,属于中考压轴题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.如图,正方形ABCD中,点E在BC上移动,FA平分∠DAE,AF交CD于F,连接EF.求证:BE+DF=AE.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.如图,在△ABC中,∠CAB=70°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为(  )
A.35°B.40°C.50°D.70°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.下列说法,正确的有(  )个
①m是一个实数,m2的算术平方根是m;②m是一个实数,则-m没有平方根;③带根号的数是无理数;④无理数是无限小数.
A.0B.1C.2D.3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.综合与实践
问题情境:
       如图1,已知点E,F分别在正方形ABCD的边AB,BC上,且BE=BF,点M为AF的中点,连接CE,BM.

(1)线段CE与BM之间的数量关系是CE=2BM,位置关系是CE⊥BM.
猜想证明:
(2)如图2,将线段BE和BF绕点B逆时针旋转,旋转角均为α(0°<α<90°).点M为线段AF的中点,连接BM,请你判断(1)中的两个结论是否仍然成立.若成立,请证明;若不成立,请说明理由.
探索发现:
(3)将图1中的线段BE和BF绕点B逆时针旋转,旋转角为α=90°,点M为线段AF的中点,得到如图3所示的图形,请你判断线段CE与BM之间的数量关系是否发生变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,想在河堤两岸搭建一座桥,图中搭建方式中,最短的是(  )
A.PAB.PBC.PCD.PD

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.在平面直角坐标系中,将直线l1:y=-3x-2向左平移1个单位,再向上平移3个单位得到直线l2,则直线l2的解析式为(  )
A.y=-3x-9B.y=-3x-2C.y=-3x+2D.y=-3x+9

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,已知直线l与⊙O相离,OA⊥l于点A,交⊙O于点P,点B是⊙O上一点,连接BP并延长,交直线l于点C,使得AB=AC.
(1)求证:AB是⊙O的切线;
(2)PC=2$\sqrt{6}$,OA=4.
①求⊙O的半径;
②求线段PB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.下列四幅图案可以看作是以图案中某部分为基本图形平移得到的是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案