精英家教网 > 初中数学 > 题目详情
如图所示,四边形OABC是矩形,点D在OC边上,以AD为折痕,将△OAD向上翻折,点O恰好落在BC边上的点E处,若△ECD的周长为4,△EBA的周长为12.
(1)矩形OABC的周长为
16
16

(2)若A点坐标为(5,0),求点D和点E的坐标.
分析:(1)根据折叠和矩形的性质得出AE=OA=BC,OD=DE,BC=OA,AB=OC,根据已知得出CE+CD+DE+AB+BE+AE=16,推出CE+BE+AB+OA+OD+CD=16即可.
(2)根据勾股定理求出BE,求出CE,设OD=x,则DE=OD=x,DC=3-x,在Rt△CDE中,由勾股定理得出x2=12+(3-x)2,求出即可.
解答:解:(1)∵以AD为折痕,将△OAD向上翻折,点O恰好落在BC边上的点E处,四边形OABC是矩形,
∴AE=OA=BC,OD=DE,BC=OA,AB=OC,
∵△ECD的周长为4,△EBA的周长为12,
∴CE+CD+DE+AB+BE+AE=4+12=16,
∴CE+BE+AB+OA+OD+CD=16,
即矩形OABC的周长为16,
故答案为:16.

(2)∵矩形OABC的周长为16,
∴2OA+2OC=16,
∵A点坐标为(5,0),
∴OA=5,
∴OC=3,
∵在Rt△ABE中,∠B=90°,AB=3,AE=OA=5,由勾股定理得:BE=4,
∴CE=5-4=1,
设OD=x,则DE=OD=x,DC=3-x,
在Rt△CDE中,由勾股定理得:x2=12+(3-x)2
解得:x=
5
3

即OD=
5
3

∴D的坐标是(0,
5
3
),E的坐标是(1,3).
点评:本题考查了勾股定理,矩形的性质,折叠的性质的应用,用了方程思想.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,四边形OABC为正方形,边长为6,点A,C分别在x轴,y轴的正半轴上,点D在OA上,且D的坐标为(2,0),P是OB上的一动点,试求PD+PA和的最小值是(  )
A、2
10
B、
10
C、4
D、6

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线y=-
12
x
+b交折线OAB于点E.记△ODE的面积为S.
(1)当点E在线段OA上时,求S与b的函数关系式;并求出b的范围;
(2)当点E在线段AB上时,求S与b的函数关系式;并求出b的范围;
(3)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形OA1B1C1,试探究OA1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出该重叠部分的面积;若改变,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•吴中区一模)如图所示,四边形OABC是矩形,点A、C的坐标分别为(6,0),(0,2),点D是线段BC上的动点(与端点B、C不重合),过点D作直线y=-
12
x
+b交折线OAB于点E.
(1)记△ODE的面积为S,求S与b的函数关系式;
(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,试探究四边形O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出该重叠部分的面积;若改变,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

小明参加汽车驾驶培训,在实际操作考试时,被要求进行启动加速、匀速运行、制动减速三个连贯过程,在加速和减速运动过程中,路程和速度均满足关系s=v0t+
12
at2
,v0为加速或减速的起始速度,加速时a为正,减速时a为负,匀速时a=0,加速或减速t秒后的瞬时速度v=v0+at,小明在操作中瞬时速度v与时间t的关系如图所示,其中OA为匀加速,AB为匀速,BC为匀减速.
(1)若减速过程与加速过程完全相反,即BC与OA关于AB的中垂线成轴对称,求BC的解析式.
(2)当0≤t≤300时,求汽车行驶的路程s与时间t的函数关系式.
(3)汽车行驶t秒后,
①若经途中D点,过点D作垂线交AB于点E,试证明汽车行驶的路程恰等于四边形OAED的面积.
②若汽车行驶至M点,过点M做垂线交BC于点N,汽车行驶的路程是否等于五边形OABNM的面积呢?试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,四边形ABCD与A′B′C′D′以0为位似中心,位似比为1:2.则点A的对应点是点
A′
A′
.点B的对应点是点
B′
B′
.线段AB的对应线段是线段
A′B′
A′B′
,∠DAB的对应角是
∠D′A′B′
∠D′A′B′
,线段AD与A′D′的比为
1:2
1:2
.它们关于点
O
O
位似.△OAB与
△OA′B′
△OA′B′
相似,相似比为
1:2
1:2

查看答案和解析>>

同步练习册答案