【题目】如图,⊙C经过坐标原点,且与两坐标轴分别交于点A与点B,点A的坐标为(0,4),M是圆上一点,∠BMO=120°.
(1)求证:AB为⊙C直径.
(2)求⊙C的半径及圆心C的坐标.
【答案】(1)证明见解析(2)4,(-2,2)
【解析】试题分析:(1)由于∠AOB=90°,那么应连接AB,得到AB是直径.由∠BMO=120°可得到∠BAO=60°,易得OA=4,利用60°的三角函数,即可求得AB,进而求得半径.
(2)利用勾股定理可得OB长,作出OB的弦心距,利用勾股定理可得到C的横坐标的绝对值,同法可得到点C的横坐标.
(1)连接AB,AM,则由∠AOB=90°,故AB是直径,
(2)由∠BAM+∠OAM=∠BOM+∠OBM=180°-120°=60°,
得∠BAO=60°,
又AO=4,故cos∠BAO= ,
AB=,
从而⊙C的半径为4.
.
过C作CE⊥OA于E,CF⊥OB于F,
则EC=OF= ,,CF=OE= .
故C点坐标为(-2,2).
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+c与x轴交于点A(1,0),B(3,0),且过点C(0,-3).
(1)求抛物线的解析式和顶点坐标;
(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=-x上,并写出平移后抛物线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,P为⊙O外一点,PA、PB为⊙O的切线,A、B为切点,弦AB与PO交于C,⊙O半径为1,PO=2,则PA_______,PB=________,PC=_______AC=______,BC=______∠AOB=________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列事件中,必然事件的个数为( )
①标准大气压下,水加热到100 ℃沸腾;②某种彩票中奖的概率是1%,买100张该种彩票会中奖;③任意投掷一枚质地均匀的硬币,正面朝上;④367人中至少有两人的生日相同.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点M,N分别是正五边形ABCDE的边BC,CD上的点,且BM=CN,AM交BN于点P.
(1)求证:△ABM≌△BCN;
(2)求∠APN的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的有( )
①不相交的两条直线是平行线.②垂直于同一条直线互相平行。③经过一点,有且只有一条直线和已知直线平行。④两条直线被第三条直线所截,内错角相等。其中错误的是( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com