精英家教网 > 初中数学 > 题目详情
28、x2-{x2-[x2-(x2-1)-1]-1}-1.
分析:先去小括号,再去中括号,最后去大括号,再合并同类项即可.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.
解答:解:x2-{x2-[x2-(x2-1)-1]-1}-1
=x2-{x2-[x2-x2+1-1]-1}-1
=x2-{x2-x2+x2-1+1-1}-1
=x2-x2+x2-x2+1-1+1-1
=0.
点评:解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.注意要先去小括号,再去中括号,最后去大括号.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、完成表格,观察表格中的两个根的和与积,它们与原来的方程的系数有什么关系?
方程 x1 x2 x1+x2 x1x2
x2-2x=0 0 2
2
0
x2+3x-4=0 -4 1
-3
-4
x2-5x+6=0 2 3
5
6
(1)请用文字语言概括你的发现.
若二次项系数为1,常用以下关系:x1,x2是方程x2+px+q=0的两根时,x1+x2=-p,x1x2=q

(2)一般的,对于关于x的方程x2+px+q=0(p、q为常数,p2-4q≥0)的两根为x1,x2,则x1+x2=
-p
,x1x2=
q

(3)运用以上发现解决下列问题:已知x1,x2是方程x2-x-3=0的两根,求代数式(1+x1)(1+x2)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

解下列方程,将得到的解填入下面的表格中,观察表格中两个解的和与积,它们和原来的方程的系数有什么联系?
(1)x2-2x=0(2)x2+3x-4=0(3)x2-5x+6=0
方  程 x1 x2 x1+x2 x1.x2
(1)
0
0
2
2
2
2
0
0
(2)
-4
-4
1
1
-3
-3
-4
-4
(3)
2
2
3
3
5
5
6
6
请同学们仔细观察方程的解,你会发现方程的解与方程中未知数的系数和常数项之间有一定的关系.
一般的,对于关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根为x1、x2
则x1+x2=
-p
-p
,x1.x2=
q
q

(2)运用以上发现,解决下面的问题:
①已知一元二次方程x2-2x-7=0的两个根为x1,x2,则x1+x2的值为
B
B

A.-2     B.2     C.-7     D.7
②已知x1,x2是方程x2-x-3=0的两根,利用上述结论,不解方程,求x12+x22的值.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2013•珠海)阅读下面材料,并解答问题.
材料:将分式
-x4-x2+3
-x2+1
拆分成一个整式与一个分式(分子为整数)的和的形式.
解:由分母为-x2+1,可设-x4-x2+3=(-x2+1)(x2+a)+b
则-x4-x2+3=(-x2+1)(x2+a)+b=-x4-ax2+x2+a+b=-x4-(a-1)x2+(a+b)
∵对应任意x,上述等式均成立,∴
a-1=1
a+b=3
,∴a=2,b=1
-x4-x2+3
-x2+1
=
(-x2+1)(x2+2)+1
-x2+1
=
(-x2+1)(x2+2)
-x2+1
+
1
-x2+1
=x2+2+
1
-x2+1

这样,分式
-x4-x2+3
-x2+1
被拆分成了一个整式x2+2与一个分式
1
-x2+1
的和.
解答:
(1)将分式
-x4-6x2+8
-x2+1
拆分成一个整式与一个分式(分子为整数)的和的形式.
(2)试说明
-x4-6x2+8
-x2+1
的最小值为8.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下列材料,然后回答问题:
(1)以2、3为根的一元二次方程为x2-5x+6=0,以
1
2
1
3
为根的一元二次方程为6x2-5x+1=0;
(2)以4、7为根的一元二次方程为x2-11x+28=0,以
1
4
1
7
为根的一元二次方程为28x2-11x+1=0;
问题:以a、b为根的一元二次方程为x2-mx+n=0,则以
1
a
1
b
为根的一元二次方程为
nx2-mx+1=0
nx2-mx+1=0

查看答案和解析>>

科目:初中数学 来源: 题型:

对于形如x2+2x+1这样的二次三项式,可以用公式法将它分解成(x+1)2的形式,但对于二次三项式x2+2x-3,就不能直接运用公式了.此时,我们可以在二次三项式x2+2x-3中先加上1使它与x2+2x的和成为一个完全平方式,再减去1,整个式子的值不变,于是有:
x2+2x-3=(x2+2x+1)-1-3
=(x+1)2-22
=(x+1+2)(x+1-2)
=(x+3)(x-1)
像这样,先添一适当项,使式子出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.利用“配方法”分解因式:(1)a2-8a+12;(2)a2+4ab+3b2

查看答案和解析>>

同步练习册答案