精英家教网 > 初中数学 > 题目详情
在平面直角坐标系中,设点P到原点O的距离为ρ,OP与x轴的正方向的夹角为α,则用[ρ,α]表示点P的极坐标,显然,点P的坐标和它的极坐标存在一一对应关系,如点P的坐标(1,1)的极坐标为P[
2
,45°],则极坐标Q[2
3
,120°]的坐标为(  )
A、(-
3
,3)
B、(-3,
3
C、(
3
,3)
D、(3,
3
分析:弄清极坐标中第一个数表示点到原点的距离,第二个数表示这一点与原点的连线与x轴的夹角,根据点Q[2
3
,120°]利用特殊角的三角函数值即可求出点Q的坐标.
解答:解:由题目的叙述可知极坐标中第一个数表示点到原点的距离,
而第二个数表示这一点与原点的连线与x轴的夹角,极坐标Q[2
3
,120°],
这一点在第二象限,则在平面直角坐标系中横坐标是:-2
3
cos60°=-
3

纵坐标是2
3
sin60°=3,
于是极坐标Q[2
3
,120°]的坐标为(-
3
,3).
故选A.
点评:本题是一个阅读理解性的问题,解决的关键是读懂题目中叙述的问题的意思,并正确转化为所学的知识.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、在平面直角坐标系中,点P到x轴的距离为8,到y轴的距离为6,且点P在第二象限,则点P坐标为
(-6,8)

查看答案和解析>>

科目:初中数学 来源: 题型:

10、在平面直角坐标系中,点P1(a,-3)与点P2(4,b)关于y轴对称,则a+b=
-7

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,有A(2,3)、B(3,2)两点.
(1)请再添加一点C,求出图象经过A、B、C三点的函数关系式.
(2)反思第(1)小问,考虑有没有更简捷的解题策略?请说出你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,开口向下的抛物线与x轴交于A、B两点,D是抛物线的顶点,O为精英家教网坐标原点.A、B两点的横坐标分别是方程x2-4x-12=0的两根,且cos∠DAB=
2
2

(1)求抛物线的函数解析式;
(2)作AC⊥AD,AC交抛物线于点C,求点C的坐标及直线AC的函数解析式;
(3)在(2)的条件下,在x轴上方的抛物线上是否存在一点P,使△APC的面积最大?如果存在,请求出点P的坐标和△APC的最大面积;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、在平面直角坐标系中,把一个图形先绕着原点顺时针旋转的角度为θ,再以原点为位似中心,相似比为k得到一个新的图形,我们把这个过程记为【θ,k】变换.例如,把图中的△ABC先绕着原点O顺时针旋转的角度为90°,再以原点为位似中心,相似比为2得到一个新的图形△A1B1C1,可以把这个过程记为【90°,2】变换.
(1)在图中画出所有符合要求的△A1B1C1
(2)若△OMN的顶点坐标分别为O(0,0)、M(2,4)、N(6,2),把△OMN经过【θ,k】变换后得到△O′M′N′,若点M的对应点M′的坐标为(-1,-2),则θ=
0°(或360°的整数倍)
,k=
2

查看答案和解析>>

同步练习册答案