精英家教网 > 初中数学 > 题目详情

计算或因式分【解析】
(1)计算:(a2-4)÷;(2)因式分【解析】
a(n-1)2-2a(n-1)+a.

(1)原式=a2-2a;(2)原式=a(n-2)2. 【解析】试题分析:(1)先把括号内的进行因式分解,然后把除法转化成乘法进行约分即可得解; (2)首先提取公因式a,再利用完全平方公式分解因式得出答案. 试题解析:(1)原式=(a+2)(a-2) =a(a-2)=a2-2a; (2)原式=a[(n-1)2-2(n-1)+1]=a(n-1-1)2=a(n-2)2. ...
练习册系列答案
相关习题

科目:初中数学 来源:2017-2018学年黑龙江省哈尔滨市双城区七年级(上)期末数学试卷(五四学制) 题型:填空题

如图,∠AOB=90°,以O为顶点的锐角共有

5 【解析】 试题分析:根据题意可得锐角为:∠BOC、∠BOD、∠COD、∠COA和∠AOD共5个.

查看答案和解析>>

科目:初中数学 来源:2017-2018学年九年级数学北师大版上册 第3章 概率的进一步认识 单元测试卷 题型:解答题

如图,有两部不同型号的手机(分别记为A,B)和与之匹配的2个保护盖(分别记为a,b)散乱地放在桌子上.

(1)若从手机中随机取一部,再从保护盖中随机取一个,求恰好匹配的概率;

(2)若从手机和保护盖中随机取两个,用画树状图法或列表法求恰好匹配的概率.

(1)(2) 【解析】试题分析:(1)由题意可得有Aa,Ab,Ba,Bb四种情况.恰好匹配的有Aa,Bb两种情况,然后直接利用概率公式求解即可求得答案; (2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及恰好匹配的情况,再利用概率公式即可求得答案. 试题解析:(1)从手机中随机抽取一个,再从保护盖中随机取一个,有Aa,Ab,Ba,Bb四种结果,每种结果出现的可能性...

查看答案和解析>>

科目:初中数学 来源:2017-2018学年九年级数学北师大版上册 第3章 概率的进一步认识 单元测试卷 题型:单选题

一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上的概率是( )

A. B. C. D.

D 【解析】试题分析:先利用列表法与树状图法表示所有等可能的结果n,然后找出某事件出现的结果数m,最后计算概率.同时掷两枚质地均匀的硬币一次,共有正正、反反、正反、反正四种等可能的结果,两枚硬币都是正面朝上的占一种,所以两枚硬币都是正面朝上的概率=1÷4=.

查看答案和解析>>

科目:初中数学 来源:2017-2018学年八年级数学人教版上册 全册综合测试卷 题型:解答题

如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF.

(1)求证:BG=CF.

(2)请你判断BE+CF与EF的大小关系,并说明理由.

(1)证明见解析;(2)BE+CF>EF.理由见解析. 【解析】试题分析:(1)先利用ASA判定△BGD≌△CFD,从而得出BG=CF; (2)再利用全等的性质可得GD=FD,再有DE⊥GF,从而得出EG=EF,两边和大于第三边从而得出BE+CF>EF. 试题解析:(1)∵BG∥AC, ∴∠DBG=∠DCF. ∵D为BC的中点, ∴BD=CD 又∵∠BDG...

查看答案和解析>>

科目:初中数学 来源:2017-2018学年八年级数学人教版上册 全册综合测试卷 题型:填空题

如图所示, AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=_____.

55° 【解析】求出∠BAD=∠EAC,证△BAD≌△EAC,推出∠2=∠ABD=30°,根据三角形的外角性质求出即可. 【解析】 ∵∠BAC=∠DAE, ∴∠BAC﹣∠DAC=∠DAE﹣∠DAC, ∴∠1=∠EAC, 在△BAD和△EAC中, AB=AC,∠BAD=∠EAC, ∴△BAD≌△EAC(SAS), ∴∠2=∠ABD=30°, ∵...

查看答案和解析>>

科目:初中数学 来源:2017-2018学年八年级数学人教版上册 全册综合测试卷 题型:单选题

已知等腰三角形的一边长为5,另一边长为10,则这个等腰三角形的周长为( )

A. 25 B. 25或20 C. 20 D. 15

A 【解析】 试题分析:分两种情况: 当腰为5时,5+5=10,所以不能构成三角形; 当腰为10时,5+10>10,所以能构成三角形,周长是:10+10+5=25cm. 故选A.

查看答案和解析>>

科目:初中数学 来源:湖南邵阳市区2017-2018学年八年级上册数学期末试卷 题型:填空题

化简: = __________。

【解析】 = = = .

查看答案和解析>>

科目:初中数学 来源:湖北省襄阳老河口市2018届九年级上学期期末考试数学试卷 题型:解答题

如图,AB是⊙O的直径,AD是⊙O的弦,点F是DA延长线上的一点,过⊙O上一点C作⊙O的切线交DF于点E,CE⊥DF.

(1)求证:AC平分∠FAB;

(2)若AE=1,CE=2,求⊙O的半径.

(1)证明见解析;(2) 【解析】试题分析:(1)连接OC,根据切线的性质和圆周角定理,得出∠OCA=∠OAC与∠CAE=∠OCA,然后根据角平分线的定义可证明; (2)由圆周角定理得到∠BCA=90°,由垂直的定义,可求出∠CEA=90°,从而根据两角对应相等的两三角形相似可证明△ACB∽△AEC,再根据相似三角形的对应边成比例求得AB的长,从而得到圆的半径. 试题解析:(1)...

查看答案和解析>>

同步练习册答案