精英家教网 > 初中数学 > 题目详情
如图,抛物线y=-
4
5
x2+
24
5
x-4与x轴相交于点A、B,与y轴相交于点C,抛物线的对称轴与x轴相交于点M.P是抛物线在x轴上方的一个动点(点P、M、C不在同一条直线上).分别过点A、B作直线CP的垂线,垂足分别为D、E,连接点MD、ME.
(1)求点A,B的坐标(直接写出结果),并证明△MDE是等腰三角形;
(2)△MDE能否为等腰直角三角形?若能,求此时点P的坐标;若不能,说明理由;
(3)若将“P是抛物线在x轴上方的一个动点(点P、M、C不在同一条直线上)”改为“P是抛物线在x轴下方的一个动点”,其他条件不变,△MDE能否为等腰直角三角形?若能,求此时点P的坐标(直接写出结果);若不能,说明理由.
(1)抛物线解析式为y=-
4
5
x2+
24
5
x-4,令y=0,
即-
4
5
x2+
24
5
x-4=0,解得x=1或x=5,∴A(1,0),B(5,0).
如答图1所示,分别延长AD与EM,交于点F.

∵AD⊥PC,BE⊥PC,∴ADBE,∴∠MAF=∠MBE.
在△AMF与△BME中,
∠MAF=∠MBE
MA=MB
∠AMF=∠BME

∴△AMF≌△BME(ASA),
∴ME=MF,即点M为Rt△EDF斜边EF的中点,
∴MD=ME,即△MDE是等腰三角形.

(2)答:能.
抛物线解析式为y=-
4
5
x2+
24
5
x-4=-
4
5
(x-3)2+
16
5

∴对称轴是直线x=3,M(3,0);
令x=0,得y=-4,∴C(0,-4).
△MDE为等腰直角三角形,有3种可能的情形:
①若DE⊥EM,
由DE⊥BE,可知点E、M、B在一条直线上,
而点B、M在x轴上,因此点E必然在x轴上,
由DE⊥BE,可知点E只能与点O重合,即直线PC与y轴重合,
不符合题意,故此种情况不存在;
②若DE⊥DM,与①同理可知,此种情况不存在;
③若EM⊥DM,如答图2所示:

设直线PC与对称轴交于点N,
∵EM⊥DM,MN⊥AM,∴∠EMN=∠DMA.
在△ADM与△NEM中,
∠EMN=∠DMA
EM=DM
∠ADM=∠NEM=135°

∴△ADM≌△NEM(ASA),
∴MN=MA.
抛物线解析式为y=-
4
5
x2+
24
5
x-4=-
4
5
(x-3)2+
16
5
,故对称轴是直线x=3,
∴M(3,0),MN=MA=2,
∴N(3,2).
设直线PC解析式为y=kx+b,∵点N(3,2),C(0,-4)在直线上,
3k+b=2
b=-4
,解得k=2,b=-4,∴y=2x-4.
将y=2x-4代入抛物线解析式得:2x-4=-
4
5
x2+
24
5
x-4,
解得:x=0或x=
7
2

当x=0时,交点为点C;当x=
7
2
时,y=2x-4=3.
∴P(
7
2
,3).
综上所述,△MDE能成为等腰直角三角形,此时点P坐标为(
7
2
,3).

(3)答:能.
如答题3所示,设对称轴与直线PC交于点N.
与(2)同理,可知若△MDE为等腰直角三角形,直角顶点只能是点M.

∵MD⊥ME,MA⊥MN,∴∠DMN=∠EMB.
在△DMN与△EMB中,
∠DMN=∠EMB
MD=ME
∠MDN=∠MEB=45°

∴△DMN≌△EMB(ASA),
∴MN=MB.
∴N(3,-2).
设直线PC解析式为y=kx+b,∵点N(3,-2),C(0,-4)在抛物线上,
3k+b=-2
b=-4
,解得k=
2
3
,b=-4,∴y=
2
3
x-4.
将y=
2
3
x-4代入抛物线解析式得:
2
3
x-4=-
4
5
x2+
24
5
x-4,
解得:x=0或x=
31
6

当x=0时,交点为点C;当x=
31
6
时,y=
2
3
x-4=-
5
9

∴P(
31
6
-
5
9
).
综上所述,△MDE能成为等腰直角三角形,此时点P坐标为(
31
6
-
5
9
).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:二次函数y=a(x-1)2+4的图象如图所示,抛物线交y轴于点C,交x轴于A、B两点,用A点坐标为(-1,0).
(1)求a的值及点B的坐标.
(2)连接AC、BC,E是线段OC上的动点(不与O、C两点重合),过E点作直线PE⊥y轴交线段AC于点P,交线段BC于点Q.求证:
CE
CO
=
PQ
AB

(3)设E点的坐标为(0,n),在线段AB上是否存在一点R,使得以P、Q、R为顶点的三角形与△BOC相似?若存在,求出n的值,并画出相应的示意图;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知A(0,1)、D(4,3),P是以AD为对角线的矩形ABDC内部(不在各边上)的一个动点,点C在y轴上,抛物线y=ax2+bx+1以P为顶点.
(1)能否判断抛物线y=ax2+bx+1的开口方向?请说明理由.
(2)设抛物线y=ax2+bx+1与x轴有交点F、E(F在E的左侧),△EAO与△FAO的面积之差为3,且这条抛物线与线段AD有一个交点的横坐标为
7
2
,这时能确定a、b的值吗?若能,请求出a、b的值;若不能,请确定a、b的取值范围.(本题的图形仅供分析参考用)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在直角坐标平面内,二次函数图象的顶点为A(1,-4),且过点B(3,0).
(1)求该二次函数的解析式;
(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x轴的另一个交点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

甲、乙两人连续6年对某县农村鳗鱼养殖业的规模(总产量)进行调查,提供了两个方面的信息,分别得到甲、乙两图:甲调查表明:每个鱼池平均产量从第1年1万只鳗鱼上升到第6年2万只.乙调查表明:全县鱼池总个数由第1年30个减少到第6年10个.
请你根据提供的信息说明:
(1)第2年全县鱼池的个数及全县出产的鳗鱼总数;
(2)第6年这个县的鳗鱼养殖业的规模(即总产量)比第1年扩大了还是缩小了?请说明理由;
(3)哪一年(取整数)的规律(即总产量)最大?请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,二次函数y=-x2+bx+3的图象经过点A(-1,0),顶点为B.
(1)求这个二次函数的解析式;
(2)若点C的坐标为(4,0),连接BC,过点A作AE⊥BC,垂足为点E.当点D在直线AE上,且满足DE=1时,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

把一边长为40cm的正方形硬纸板,进行适当的剪裁,折成一个长方形盒子(纸板的厚度忽略不计).
(1)如图,若在正方形硬纸板的四角各剪一个同样大小的正方形,将剩余部分折成一个无盖的长方形盒子.
①要使折成的长方形盒子的底面积为484cm2,那么剪掉的正方形的边长为多少?
②折成的长方形盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.
(2)若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边上),将剩余部分折成一个有盖的长方形盒子,若折成的一个长方形盒子的表面积为550cm2,求此时长方形盒子的长、宽、高(只需求出符合要求的一种情况).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在半径为r的半圆⊙O中,半径OA⊥直径BC,点E、F分别在弦AB、AC上滑动并保持AE=CF,但点F不与A、C重合,点E不与A、B重合.
(1)求证:S四边形AEOF=
1
2
r2
(2)设AE=x,S△OEF=y,写出y与x之间的函数关系式及自变量x的范围;
(3)当S△OEF=
5
18
S△ABC时,求点E、F分别在AB、AC上的位置及EF的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件.市场调查反映:如果调整价格,每涨价一元,每星期要少卖出10件.设该商品定价为每件x元.
(1)该商店每星期的销售量是______件(用含x的代数式表示);
(2)设商场每星期获得的利润为y元,求y与x的函数关系式;
(3)该商品应定价为多少元时,商场能获得最大利润?

查看答案和解析>>

同步练习册答案