精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系中,A是抛物线上的一个动点,且点A在第一象限内.AE⊥y轴于点E,点B坐标为(O,2),直线AB交轴于点C,点D与点C关于y轴对称,直线DE与AB相交于点F,连结BD.设线段AE的长为m,△BED的面积为S.
(1)当时,求S的值.
(2)求S关于的函数解析式.
(3)①若S=时,求的值;
②当m>2时,设,猜想k与m的数量关系并证明.

(1);(2);(3)①;②,证明见解析.

解析试题分析:(1)根据点在曲线上点的坐标与方程的关系,求出点A的坐标,根据△ABE∽△CBO求出CO的长,从而根据轴对称的性质求出DO的长,进而求出△BED的面积S.
(2)分两种情况讨论.
(3)①连接AD,由△BED的面积为求出现,得到点A 的坐标,应用待定系数法,设
得到,从而.
②连接AD,应用待定系数法,设得到,从而得到,因此.
得到,从而
试题解析:(1)∵点A是抛物线上的一个动点,AE⊥y轴于点E,且
∴点A的坐标为. ∴当时,点A的坐标为.
∵点B的坐标为,∴BE=OE=1.
∵AE⊥y轴,∴AE∥x轴. ∴△ABE∽△CBO.∴,即,解得.
∵点D与点C关于y轴对称,∴.
.
(2)①当时,如图,
∵点D与点C关于y轴对称,∴△DBO≌△CBO.
∵△ABE∽△CBO,∴△ABE∽△DBO .∴.∴
.

②当时,如图,同①可得

综上所述,S关于的函数解析式.
(3)①如图,连接AD,
∵△BED的面积为,∴.∴点A 的坐标为.
,∴.
.
.

②k与m的数量关系为,证明如下:
连接AD,则
,∴.
.
∵点A 的坐标为,∴.

考点:1.二次函数综合题;2.单动点问题;3.曲线上点的坐标与方程的关系;4.相似三角形的判定和性质;5.轴对称的性质;6.分类思想和待定系数法的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(2,0)、C(0,2)三点.
(1)求这条抛物线的解析式;
(2)如图一,点P是第一象限内此抛物线上的一个动点,当点P运动到什么位置时,四边形ABPC的面积最大?求出此时点P的坐标;
(3)如图二,设线段AC的垂直平分线交x轴于点E,垂足为D,M为抛物线的顶点,那么在直线DE上是否存在一点G,使△CMG的周长最小?若存在,请求出点G的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知二次函数(a≠0)的图象经过点A,点B.
(1)求二次函数的表达式;
(2)若反比例函数(x>0)的图象与二次函数(a≠0)的图象在第一象限内交于点落在两个相邻的正整数之间,请你直接写出这两个相邻的正整数;
(3)若反比例函数(x>0,k>0)的图象与二次函数(a≠0)的图象在第一象限内交于点,且,试求实数k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,直线与抛物线y=ax2+bx-3(a≠0)交于A、B两点,点A在x轴上,点B的纵坐标为5.点P是直线AB下方的抛物线上的一动点(不与点A、B重合),过点P作x轴的垂线交直线AB于点C,作PD⊥AB于点D.
(1)求抛物线的解析式;
(2)设点P的横坐标为m.
①用含m的代数式表示线段PD的长,并求出线段PD长的最大值;
②连结PB,线段PC把△PDB分成两个三角形,是否存在适合的m的值,使这两个三角形的面积比为1:2.若存在,直接写出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.
(1)若花园的面积为192m2,  求x的值;
(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图1,抛物线经过A(-1,0),C(3,-2)两点,与轴交于点D,与轴交于另一点B.
(1)求此抛物线的解析式;
(2)若直线)将四边形ABCD面积二等分,求的值;
(3)如图2,过点E(1,1)作EF⊥轴于点F,将△AEF绕平面内某点P旋转180°得△MNQ(点M、N、Q分别与点A、E、F对应),使点M、N在抛物线上,求点N和点P的坐标?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知二次函数.
(1)用配方法求其图象的顶点C的坐标,并描述改函数的函数值随自变量的增减而增减的情况;
(2)求函数图象与x轴的交点A,B的坐标,及△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在平面直角坐标系中,已知二次函数的图象与轴相交于点,顶点为,点在这个二次函数图象的对称轴上.若四边形是一个边长为2且有一个内角为的菱形.求此二次函数的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,O为坐标原点,点A、B的坐标分别为(8,0)、(0,6).动点Q从点O、动点P从点A同时出发,分别沿着OA方向、AB方向均以1个单位长度/秒的速度匀速运动,运动时间为t(秒)(0<t≤5).以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为C、D,连接CD、QC.
(1)求当t为何值时,点Q与点D重合?
(2)设△QCD的面积为S,试求S与t之间的函数关系式,并求S的最大值;
(3)若⊙P与线段QC只有一个交点,请直接写出t的取值范围.

查看答案和解析>>

同步练习册答案