【题目】如图,AB是⊙O的直径,点C、D是圆上两点,且OD∥AC,OD与BC交于点E.
(1)求证:E为BC的中点;
(2)若BC=8,DE=3,求AB的长度.
【答案】(1)证明见解析;(2).
【解析】试题分析:(1)、根据直径所对的圆周角为直角可得∠C=90°,根据OD∥AC得出OD⊥BC,从而根据垂径定理得出E为BC的中点;(2)、根据垂径定理得出BE=4,设半径为x,得出OE=x-3,然后根据Rt△BOE 的勾股定理求出x的值,从而得出AB的长度.
试题解析:(1)、∵AB是半圆O的直径,
∴∠C=90°,
∵OD∥AC,
∴∠OEB=∠C=90°,
∴OD⊥BC,
∴BE=CE,
∴E为BC的中点;
(2)、设圆的半径为x,则OB=OD=x,OE=x﹣3,
∵BE=BC=4,
在Rt△BOE中,OB2=BE2+OE2,
∴x2=42+(x﹣3)2,解得,
∴AB=2x=.
科目:初中数学 来源: 题型:
【题目】袁隆平院士是中国杂交水稻育种专家,中国研究与发展杂交水稻的开创者,被誉为“世界杂交水稻之父”,他研究的水稻,不仅高产,而且抗倒伏.某村引进了袁隆平的甲乙两种水稻良种,各选6块条件相同的试验田,同时播种并核定亩产,结果甲、乙两种水稻的平均产量均为1100kg/亩,方差分别为S甲2=141.7,S乙2=433.3,则产量稳定,适合推广的品种为( )
A.甲、乙均可B.甲C.乙D.无法确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长54米的不锈钢栅栏围成,与墙平行的一边留一个宽为2米的出入口,如图所示,如何设计才能使园地的而积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题:
(1)设AB=x米(x>0),试用含x的代数式表示BC的长;
(2)请你判断谁的说法正确,为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一个3×2的矩形(即长为3,宽为2)可以用两种不同的方式分割成3或6个边长是正整数的小正方形,即:小正方形的个数最多是6个,最少是3个.
(1)一个5×2的矩形用不同的方式分割后,小正方形的个数最多是 个,最少是 个;
(2)一个7×2的矩形用不同的方式分割后,小正方形的个数最多是 个,最少是 个;
(3)一个(2n+1)×2的矩形用不同的方式分割后,小正方形的个数最多是 个,最少是 个.(n是正整数)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com