精英家教网 > 初中数学 > 题目详情

在平面直角坐标系xOy中,抛物线数学公式经过原点O,点B(-2,n)在这条抛物线上.
(1)求抛物线的解析式;
(2)将直线y=-2x沿y轴向下平移b个单位后得到直线l,若直线l经过B点,求n、b的值;
(3)在(2)的条件下,设抛物线的对称轴与x轴交于点C,直线l与y轴交于点D,且与抛物线的对称轴交于点E.若P是抛物线上一点,且PB=PE,求P点的坐标.

解:(1)∵拋物线经过原点,
∴m2-6m+8=0.
解得m1=2,m2=4.
由题意知m≠4,
∴m=2.
∴拋物线的解析式为

(2)∵点B(-2,n)在拋物线上,
∴n=3.
∴B点的坐标为(-2,3).
∵直线l的解析式为y=-2x-b,直线l经过B点,
∴3=-2(-2)-b.
∴b=1.

(3)∵拋物线的对称轴为直线x=2,直线l的解析式为y=-2x-1,
∴拋物线的对称轴与x轴的交点C的坐标为(2,0),
直线l与y轴、直线x=2的交点坐标分别为 D(0,-1)、E(2,-5).
过点B作BG⊥直线x=2于G,与y轴交于F.
则BG=4.
在Rt△BGC中,
∵CE=5,∴CB=CE.
过点E作EH⊥y轴于H.
则点H的坐标为 (0,-5).
∵点F、D的坐标为F(0,3)、D(0,-1),
∴FD=DH=4,BF=EH=2,∠BFD=∠EHD=90°,
∵在△DFB和△DHE中

∴△DFB≌△DHE(SAS).
∴DB=DE.
∵PB=PE,
∴点P在直线CD上.
∴符合条件的点P是直线CD与该抛物线的交点.
设直线CD的解析式为y=kx+a.
将D(0,-1)、C(2,0)代入,

解得
∴直线CD的解析式为
设点P的坐标为(x,),
=
解得

∴点P的坐标为()或().
分析:(1)利用拋物线经过原点,将(0,0)代入求出m即可;
(2)将点B(-2,n)代入拋物线求出n的值,进而得出直线l的解析式中b的值;
(3)首先求出E点坐标,进而得出△DFB≌△DHE,再求直线CD的解析式,将一次函数与二次函数联立求出交点坐标.
点评:此题主要考查了二次函数综合应用以及待定系数法求一次函数解析式以及一次函数与二次函数交点问题等知识,利用数形结合得出符合条件的点P是直线CD与该抛物线的交点是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

13、在平面直角坐标系xOy中,已知点A(2,-2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的有
4
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c的对称轴是x=1,并且经过(-2,-5)和(5,-12)两点.
(1)求此抛物线的解析式;
(2)设此抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于C 点,D是线段BC上一点(不与点B、C重合),若以B、O、D为顶点的三角形与△BAC相似,求点D的坐标;
(3)点P在y轴上,点M在此抛物线上,若要使以点P、M、A、B为顶点的四边形是平行四边形,请你直接写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面积S△ABC=15,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点.
(1)求此抛物线的函数表达式;
(2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;
(3)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为7
2
?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知A(2,-2),B(0,-2),在坐标平面中确定点P,使△AOP与△AOB相似,则符合条件的点P共有
5
5
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系xOy中,A(2,1)、B(4,1)、C(1,3).与△ABC与△ABD全等,则点D坐标为
(1,-1),(5,3)或(5,-1)
(1,-1),(5,3)或(5,-1)

查看答案和解析>>

同步练习册答案