精英家教网 > 初中数学 > 题目详情

如图,正方形ABCD中,DE=2AE,DF=CF,则sin∠BEF=


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
C
分析:构造直角三角形,利用解直角三角形的方法进行求解.
解答:解:如图,连接BF,作BG⊥EF,垂足为G.
设正方形的边长为6x,则有AB=AD=CD=BC=6x,
∵DE=2AE,DF=CF,
∴AE=2x,DE=4x,DF=FC=3x,
由勾股定理得,BE=2x,EF=5x.
S△AEB=6x2,S△EFD=6x2,S△BCF=9x2,S正方形ABCD=36x2
∴S△FEB=36x2-6x2-6x2-9x2=15x2=BE•EF•sin∠BEF=5•x2sin∠BEF,
∴sin∠BEF=
故选C.
点评:本题利用了正方形的性质,勾股定理,三角形的面积公式求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案