精英家教网 > 初中数学 > 题目详情
如图,在三角形纸片ABC中,AC=6,∠A=30º,∠C=90º,将∠A沿DE折叠,使点A与点B重合,则折痕DE的长为(     )
A.1B.C.D.2
D

试题分析:先根据三角形的内角和定理求得∠CBD的度数,再根据折叠的性质可得∠A=∠DBE=∠EBC=30°,然后证得△BCE≌△BDE,根据全等三角形的性质可得CE=DE,再解Rt△ADE即可求得结果.
解:∵∠A=30°,∠C=90°,
∴∠CBD=60°.
∵将∠A沿DE折叠,使点A与点B重合,
∴∠A=∠DBE=∠EBC=30°.
∵∠EBC=∠DBE,∠BCE=∠BDE=90°,BE=BE,
∴△BCE≌△BDE.
∴CE=DE.
∵AC=6,∠A=30°,
∴BC=AC×tan30°=2
∵∠CBE=30°.
∴CE=2.即DE=2.
故选D.
点评:全等三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,AB=CB,∠ABC=900,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.

①求证:△ABE≌△CBD;
②若∠CAE=300,求∠BDC的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,∠A=50°∠ABC=60°.
(1)若BD为∠ABC平分线,求∠BDC.
(2)若CE为∠ACB平分线且交BD于E,求∠BEC.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在一个正多边形中,一个外角的度数等于一个内角度数的,求这个正多边形的边数和它一个内角的度数。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在Rt△ABC中,∠ACB=900,AC=,BC=3,△DEF是边长为a(a为小于3的常数)的等边三角形,将△DEF沿AC方向平移,使点D在线段AC上,DE∥AB,设△DEF与△ABC重叠部分的周长为T。

(1)求证:点E到AC的距离为一常数;
(2)若AD=,当a=2时,求T的值;
(3)若点D运动到AC的中点处,请用含a的代数式表示T。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在△ABC中,∠ABC与∠ACB的平分线相交于O,则∠BOC一定(      )
A.大于90°B.等于90°C.小于90°D.小于或等于90°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某校要把一块形状是直角三角形的废地开发为生物园。如图所示,∠ACB=90°,AC=80m,BC=60m。若线段CD为一条水渠,且D在边AB上,已知水渠的造价是10元/米,则D点在距A点多远处时此水渠的造价最低?最低造价是多少?在图上标出D点。
   

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,OB、OC分别平分∠ABC与∠ACB, MN∥BC,若AB=36,AC=24,则△AMN的周长是

A、60               B、66               C、72               D、78

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在12×12的正方形网格中,△TAB的顶点分别为T(1,1),A(2,3),B(4,2)。

(1)以点T(1,1)为位似中心,按比例尺(TA′:TA)3:1的位似中心的同侧将TAB放大为△TA′B′,放大后点A,B的对应点分别为A′,B′,画出△TA′B′,并写出点A′,B′的坐标;
(2)在(1)中,若C(a,b)为线段AB上任一点,写出变化后点C的对应点C′的坐标。

查看答案和解析>>

同步练习册答案