精英家教网 > 初中数学 > 题目详情

【题目】如图①所示,已知A、B为直线l上两点,点C为直线l上方一动点,连接AC、BC,分别以AC、BC为边向△ABC外作正方形CADF和正方形CBEG,过点D作DD1⊥l于点D1 , 过点E作EE1⊥l于点E1
(1)如图②,当点E恰好在直线l上时(此时E1与E重合),试说明DD1=AB;
(2)在图①中,当D、E两点都在直线l的上方时,试探求三条线段DD1、EE1、AB之间的数量关系,并说明理由;
(3)如图③,当点E在直线l的下方时,请直接写出三条线段DD1、EE1、AB之间的数量关系.(不需要证明)

【答案】
(1)证明:∵四边形CADF、CBEG是正方形,

∴AD=CA,∠DAC=∠ABC=90°,

∴∠DAD1+∠CAB=90°,

∵DD1⊥AB,

∴∠DD1A=∠ABC=90°,

∴∠DAD1+∠ADD1=90°,

∴∠ADD1=∠CAB,

在△ADD1和△CAB中,

∴△ADD1≌△CAB(AAS),

∴DD1=AB


(2)解:AB=DD1+EE1

证明:过点C作CH⊥AB于H,

∵DD1⊥AB,

∴∠DD1A=∠CHA=90°,

∴∠DAD1+∠ADD1=90°,

∵四边形CADF是正方形,

∴AD=CA,∠DAC=90°,

∴∠DAD1+∠CAH=90°,

∴∠ADD1=∠CAH,

在△ADD1和△CAH中,

∴△ADD1≌△CAH(AAS),

∴DD1=AH;

同理:EE1=BH,

∴AB=AH+BH=DD1+EE1


(3)解:AB=DD1﹣EE1

证明:过点C作CH⊥AB于H,

∵DD1⊥AB,

∴∠DD1A=∠CHA=90°,

∴∠DAD1+∠ADD1=90°,

∵四边形CADF是正方形,

∴AD=CA,∠DAC=90°,

∴∠DAD1+∠CAH=90°,

∴∠ADD1=∠CAH,

在△ADD1和△CAH中,

∴△ADD1≌△CAH(AAS),

∴DD1=AH;

同理:EE1=BH,

∴AB=AH﹣BH=DD1﹣EE1


【解析】(1)由四边形CADF、CBEG是正方形,可得AD=CA,∠DAC=∠ABC=90°,又由同角的余角相等,求得∠ADD1=∠CAB,然后利用AAS证得△ADD1≌△CAB,根据全等三角形的对应边相等,即可得DD1=AB;(2)首先过点C作CH⊥AB于H,由DD1⊥AB,可得∠DD1A=∠CHA=90°,由四边形CADF是正方形,可得AD=CA,又由同角的余角相等,求得∠ADD1=∠CAH,然后利用AAS证得△ADD1≌△CAH,根据全等三角形的对应边相等,即可得DD1=AH,同理EE1=BH,则可得AB=DD1+EE1 . (3)证明方法同(2),易得AB=DD1﹣EE1

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在△ABC中,AB=6,AC=8,BC=10,D是△ABC内部或BC边上的一个动点(与B、C不重合),以D为顶点作△DEF,使△DEF∽△ABC(相似比k>1),EF∥BC.

(1)求∠D的度数;
(2)若两三角形重叠部分的形状始终是四边形AGDH.
①如图1,连接GH、AD,当GH⊥AD时,请判断四边形AGDH的形状,并证明;
②当四边形AGDH的面积最大时,过A作AP⊥EF于P,且AP=AD,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】
(1)计算: ﹣4sin45°+(﹣2012)0
(2)化简: ÷(x+1).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的布袋里装有4个大小,质地都相同的乒乓球,球面上分别标有数字1,﹣2,3,﹣4,小明先从布袋中随机摸出一个球(不放回去),再从剩下的3个球中随机摸出第二个乒乓球.
(1)共有种可能的结果.
(2)请用画树状图或列表的方法求两次摸出的乒乓球的数字之积为偶数的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,D、E分别是边AB、AC的中点,∠B=50°.先将△ADE沿DE折叠,点A落在三角形所在平面内的点为A1 , 则∠BDA1的度数为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为(  )
A.
B.2
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知点E,F,G,H分别是四边形ABCD各边AB,BC,CD,DA的中点,根据以下思路可以证明四边形EFGH是平行四边形:
(1)如图2,将图1中的点C移动至与点E重合的位置,F,G,H仍是BC,CD,DA的中点,求证:四边形CFGH是平行四边形;
(2)如图3,在边长为1的小正方形组成的5×5网格中,点A,C,B都在格点上,在格点上画出点D,使点C与BC,CD,DA的中点F,G,H组成正方形CFGH;
(3)在(2)条件下求出正方形CFGH的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.

(1)求证:D是BC的中点;
(2)若AB=AC,试判断四边形AFBD的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=﹣x+5与双曲线y= (x>0)相交于A,B两点,与x轴相交于C点,△BOC的面积是 .若将直线y=﹣x+5向下平移1个单位,则所得直线与双曲线y= (x>0)的交点有(  )

A.0个
B.1个
C.2个
D.0个,或1个,或2个

查看答案和解析>>

同步练习册答案