精英家教网 > 初中数学 > 题目详情

【题目】点(-45)到x轴上的距离是_______,到y轴上的距离是_______

【答案】5 4

【解析】

根据点到x轴上的距离等于其纵坐标的绝对值;点到y轴上的距离等于其横坐标的绝对值即可解答.

∵点的坐标为(-45),
∴点到x轴上的距离等于其纵坐标5的绝对值,即等于5
点到y轴上的距离等于其横坐标-4的绝对值,即等于4
所以答案分别填54

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是( )

A.AB=BC
B.AC=BC
C.∠B=60°
D.∠ACB=60°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(足够长),已知计划中的建筑材料可建围墙的总长度为50m 设饲养室为长为x(m),占地面积为

(1)如图 ,问饲养室为长x为多少时,占地面积y 最大?

(2)如图要求在图中所示位置留2m的门,且仍使饲养室占地面积最大.小敏说:只要饲养室长比(1)的长多2m就行了.请你通过计算,判断小敏的说法是否正确.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.

(1)求证:四边形AECF是菱形;
(2)若AB= ,∠DCF=30°,求四边形AECF的面积.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知直线AB:y= x+4交x轴于点A,交y轴于点B.直线CD:y=﹣ x﹣1与直线AB相交于点M,交x轴于点C,交y轴于点D.

(1)直接写出点B和点D的坐标;
(2)若点P是射线MD上的一个动点,设点P的横坐标是x,△PBM的面积是S,求S与x之间的函数关系;
(3)当S=20时,平面直角坐标系内是否存在点E,使以点B、E、P、M为顶点的四边形是平行四边形?若存在,请直接写出所有符合条件的点E的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下表是某校八年级(1)班43名学生右眼视力的检查结果.

视力

4.0

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5.0

人数

1

2

5

4

3

5

1

1

5

10

6


(1)该班学生右眼视力的平均数是(结果保留1位小数).
(2)该班学生右眼视力的中位数是
(3)该班小鸣同学右眼视力是4.5,能不能说小鸣同学的右眼视力处于全班同学的中上水平?试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】交通工程学理论把在单向道路上行驶的汽车看成连续的流体,并用流量、速度、密度三个概念描述车流的基本特征,其中流量q(辆/小时)指单位时间内通过道路指定断面的车辆数;速度v(千米/小时)指通过道路指定断面的车辆速度,密度k(辆/千米)指通过道路指定断面单位长度内的车辆数.

为配合大数据治堵行动,测得某路段流量q与速度v之间关系的部分数据如下表:

(1)根据上表信息,下列三个函数关系式中,刻画q,v关系最准确的是 (只填上正确答案的序号)

q=90v+100;q=

(2)请利用(1)中选取的函数关系式分析,当该路段的车流速度为多少时,流量达到最大?最大流量是多少?

(3)已知q,v,k满足q=vk,请结合(1)中选取的函数关系式继续解决下列问题.

市交通运行监控平台显示,当12v18时道路出现轻度拥堵.试分析当车流密度k在什么范围时,该路段将出现轻度拥堵;

在理想状态下,假设前后两车车头之间的距离d(米)均相等,求流量q最大时d的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算a·a3的结果是( )

A. a4B. a4C. a3D. a3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,ABM=45°,AMBM,垂足为M,点C是BM延长线上一点,连接AC.

(1)如图1,若AB=3,BC=5,求AC的长;

(2)如图2,点D是线段AM上一点,MD=MC,点E是ABC外一点,EC=AC,连接ED并延长交BC于点F,且点F是线段BC的中点,求证:BDF=CEF.

查看答案和解析>>

同步练习册答案